Solve for p
p = \frac{\sqrt{29} + 8}{5} \approx 2.677032961
p=\frac{8-\sqrt{29}}{5}\approx 0.522967039
Share
Copied to clipboard
5p^{2}+7-16p=0
Subtract 16p from both sides.
5p^{2}-16p+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\times 7}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -16 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-16\right)±\sqrt{256-4\times 5\times 7}}{2\times 5}
Square -16.
p=\frac{-\left(-16\right)±\sqrt{256-20\times 7}}{2\times 5}
Multiply -4 times 5.
p=\frac{-\left(-16\right)±\sqrt{256-140}}{2\times 5}
Multiply -20 times 7.
p=\frac{-\left(-16\right)±\sqrt{116}}{2\times 5}
Add 256 to -140.
p=\frac{-\left(-16\right)±2\sqrt{29}}{2\times 5}
Take the square root of 116.
p=\frac{16±2\sqrt{29}}{2\times 5}
The opposite of -16 is 16.
p=\frac{16±2\sqrt{29}}{10}
Multiply 2 times 5.
p=\frac{2\sqrt{29}+16}{10}
Now solve the equation p=\frac{16±2\sqrt{29}}{10} when ± is plus. Add 16 to 2\sqrt{29}.
p=\frac{\sqrt{29}+8}{5}
Divide 16+2\sqrt{29} by 10.
p=\frac{16-2\sqrt{29}}{10}
Now solve the equation p=\frac{16±2\sqrt{29}}{10} when ± is minus. Subtract 2\sqrt{29} from 16.
p=\frac{8-\sqrt{29}}{5}
Divide 16-2\sqrt{29} by 10.
p=\frac{\sqrt{29}+8}{5} p=\frac{8-\sqrt{29}}{5}
The equation is now solved.
5p^{2}+7-16p=0
Subtract 16p from both sides.
5p^{2}-16p=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\frac{5p^{2}-16p}{5}=-\frac{7}{5}
Divide both sides by 5.
p^{2}-\frac{16}{5}p=-\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
p^{2}-\frac{16}{5}p+\left(-\frac{8}{5}\right)^{2}=-\frac{7}{5}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{16}{5}p+\frac{64}{25}=-\frac{7}{5}+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{16}{5}p+\frac{64}{25}=\frac{29}{25}
Add -\frac{7}{5} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{8}{5}\right)^{2}=\frac{29}{25}
Factor p^{2}-\frac{16}{5}p+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{8}{5}\right)^{2}}=\sqrt{\frac{29}{25}}
Take the square root of both sides of the equation.
p-\frac{8}{5}=\frac{\sqrt{29}}{5} p-\frac{8}{5}=-\frac{\sqrt{29}}{5}
Simplify.
p=\frac{\sqrt{29}+8}{5} p=\frac{8-\sqrt{29}}{5}
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}