Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

5m^{2}-3m=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5m^{2}-3m-7=7-7
Subtract 7 from both sides of the equation.
5m^{2}-3m-7=0
Subtracting 7 from itself leaves 0.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-7\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-7\right)}}{2\times 5}
Square -3.
m=\frac{-\left(-3\right)±\sqrt{9-20\left(-7\right)}}{2\times 5}
Multiply -4 times 5.
m=\frac{-\left(-3\right)±\sqrt{9+140}}{2\times 5}
Multiply -20 times -7.
m=\frac{-\left(-3\right)±\sqrt{149}}{2\times 5}
Add 9 to 140.
m=\frac{3±\sqrt{149}}{2\times 5}
The opposite of -3 is 3.
m=\frac{3±\sqrt{149}}{10}
Multiply 2 times 5.
m=\frac{\sqrt{149}+3}{10}
Now solve the equation m=\frac{3±\sqrt{149}}{10} when ± is plus. Add 3 to \sqrt{149}.
m=\frac{3-\sqrt{149}}{10}
Now solve the equation m=\frac{3±\sqrt{149}}{10} when ± is minus. Subtract \sqrt{149} from 3.
m=\frac{\sqrt{149}+3}{10} m=\frac{3-\sqrt{149}}{10}
The equation is now solved.
5m^{2}-3m=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5m^{2}-3m}{5}=\frac{7}{5}
Divide both sides by 5.
m^{2}-\frac{3}{5}m=\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
m^{2}-\frac{3}{5}m+\left(-\frac{3}{10}\right)^{2}=\frac{7}{5}+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{3}{5}m+\frac{9}{100}=\frac{7}{5}+\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{3}{5}m+\frac{9}{100}=\frac{149}{100}
Add \frac{7}{5} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{3}{10}\right)^{2}=\frac{149}{100}
Factor m^{2}-\frac{3}{5}m+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{10}\right)^{2}}=\sqrt{\frac{149}{100}}
Take the square root of both sides of the equation.
m-\frac{3}{10}=\frac{\sqrt{149}}{10} m-\frac{3}{10}=-\frac{\sqrt{149}}{10}
Simplify.
m=\frac{\sqrt{149}+3}{10} m=\frac{3-\sqrt{149}}{10}
Add \frac{3}{10} to both sides of the equation.