Solve for k
k=\frac{\sqrt{10}i}{5}-1\approx -1+0.632455532i
k=-\frac{\sqrt{10}i}{5}-1\approx -1-0.632455532i
Share
Copied to clipboard
5k^{2}+10k=-7
Add 10k to both sides.
5k^{2}+10k+7=0
Add 7 to both sides.
k=\frac{-10±\sqrt{10^{2}-4\times 5\times 7}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-10±\sqrt{100-4\times 5\times 7}}{2\times 5}
Square 10.
k=\frac{-10±\sqrt{100-20\times 7}}{2\times 5}
Multiply -4 times 5.
k=\frac{-10±\sqrt{100-140}}{2\times 5}
Multiply -20 times 7.
k=\frac{-10±\sqrt{-40}}{2\times 5}
Add 100 to -140.
k=\frac{-10±2\sqrt{10}i}{2\times 5}
Take the square root of -40.
k=\frac{-10±2\sqrt{10}i}{10}
Multiply 2 times 5.
k=\frac{-10+2\sqrt{10}i}{10}
Now solve the equation k=\frac{-10±2\sqrt{10}i}{10} when ± is plus. Add -10 to 2i\sqrt{10}.
k=\frac{\sqrt{10}i}{5}-1
Divide -10+2i\sqrt{10} by 10.
k=\frac{-2\sqrt{10}i-10}{10}
Now solve the equation k=\frac{-10±2\sqrt{10}i}{10} when ± is minus. Subtract 2i\sqrt{10} from -10.
k=-\frac{\sqrt{10}i}{5}-1
Divide -10-2i\sqrt{10} by 10.
k=\frac{\sqrt{10}i}{5}-1 k=-\frac{\sqrt{10}i}{5}-1
The equation is now solved.
5k^{2}+10k=-7
Add 10k to both sides.
\frac{5k^{2}+10k}{5}=-\frac{7}{5}
Divide both sides by 5.
k^{2}+\frac{10}{5}k=-\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
k^{2}+2k=-\frac{7}{5}
Divide 10 by 5.
k^{2}+2k+1^{2}=-\frac{7}{5}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+2k+1=-\frac{7}{5}+1
Square 1.
k^{2}+2k+1=-\frac{2}{5}
Add -\frac{7}{5} to 1.
\left(k+1\right)^{2}=-\frac{2}{5}
Factor k^{2}+2k+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+1\right)^{2}}=\sqrt{-\frac{2}{5}}
Take the square root of both sides of the equation.
k+1=\frac{\sqrt{10}i}{5} k+1=-\frac{\sqrt{10}i}{5}
Simplify.
k=\frac{\sqrt{10}i}{5}-1 k=-\frac{\sqrt{10}i}{5}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}