Solve for c
c=\frac{\sqrt{30}}{5}+1\approx 2.095445115
c=-\frac{\sqrt{30}}{5}+1\approx -0.095445115
Share
Copied to clipboard
5c^{2}-10c-1=0
Use the distributive property to multiply 5c by c-2.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-1\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -10 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-1\right)}}{2\times 5}
Square -10.
c=\frac{-\left(-10\right)±\sqrt{100-20\left(-1\right)}}{2\times 5}
Multiply -4 times 5.
c=\frac{-\left(-10\right)±\sqrt{100+20}}{2\times 5}
Multiply -20 times -1.
c=\frac{-\left(-10\right)±\sqrt{120}}{2\times 5}
Add 100 to 20.
c=\frac{-\left(-10\right)±2\sqrt{30}}{2\times 5}
Take the square root of 120.
c=\frac{10±2\sqrt{30}}{2\times 5}
The opposite of -10 is 10.
c=\frac{10±2\sqrt{30}}{10}
Multiply 2 times 5.
c=\frac{2\sqrt{30}+10}{10}
Now solve the equation c=\frac{10±2\sqrt{30}}{10} when ± is plus. Add 10 to 2\sqrt{30}.
c=\frac{\sqrt{30}}{5}+1
Divide 10+2\sqrt{30} by 10.
c=\frac{10-2\sqrt{30}}{10}
Now solve the equation c=\frac{10±2\sqrt{30}}{10} when ± is minus. Subtract 2\sqrt{30} from 10.
c=-\frac{\sqrt{30}}{5}+1
Divide 10-2\sqrt{30} by 10.
c=\frac{\sqrt{30}}{5}+1 c=-\frac{\sqrt{30}}{5}+1
The equation is now solved.
5c^{2}-10c-1=0
Use the distributive property to multiply 5c by c-2.
5c^{2}-10c=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{5c^{2}-10c}{5}=\frac{1}{5}
Divide both sides by 5.
c^{2}+\left(-\frac{10}{5}\right)c=\frac{1}{5}
Dividing by 5 undoes the multiplication by 5.
c^{2}-2c=\frac{1}{5}
Divide -10 by 5.
c^{2}-2c+1=\frac{1}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-2c+1=\frac{6}{5}
Add \frac{1}{5} to 1.
\left(c-1\right)^{2}=\frac{6}{5}
Factor c^{2}-2c+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-1\right)^{2}}=\sqrt{\frac{6}{5}}
Take the square root of both sides of the equation.
c-1=\frac{\sqrt{30}}{5} c-1=-\frac{\sqrt{30}}{5}
Simplify.
c=\frac{\sqrt{30}}{5}+1 c=-\frac{\sqrt{30}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}