Evaluate
-\left(a-8\right)\left(a+1\right)
Expand
8+7a-a^{2}
Share
Copied to clipboard
5a-\left(a^{2}-4a+2a-8\right)
Apply the distributive property by multiplying each term of a+2 by each term of a-4.
5a-\left(a^{2}-2a-8\right)
Combine -4a and 2a to get -2a.
5a-a^{2}-\left(-2a\right)-\left(-8\right)
To find the opposite of a^{2}-2a-8, find the opposite of each term.
5a-a^{2}+2a-\left(-8\right)
The opposite of -2a is 2a.
5a-a^{2}+2a+8
The opposite of -8 is 8.
7a-a^{2}+8
Combine 5a and 2a to get 7a.
5a-\left(a^{2}-4a+2a-8\right)
Apply the distributive property by multiplying each term of a+2 by each term of a-4.
5a-\left(a^{2}-2a-8\right)
Combine -4a and 2a to get -2a.
5a-a^{2}-\left(-2a\right)-\left(-8\right)
To find the opposite of a^{2}-2a-8, find the opposite of each term.
5a-a^{2}+2a-\left(-8\right)
The opposite of -2a is 2a.
5a-a^{2}+2a+8
The opposite of -8 is 8.
7a-a^{2}+8
Combine 5a and 2a to get 7a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}