Solve for a
a=\frac{\sqrt{53}+5}{14}\approx 0.877150706
a=\frac{5-\sqrt{53}}{14}\approx -0.162864992
Share
Copied to clipboard
5a^{2}-6a+1=12a^{2}-5a-6a
Combine -a and -5a to get -6a.
5a^{2}-6a+1=12a^{2}-11a
Combine -5a and -6a to get -11a.
5a^{2}-6a+1-12a^{2}=-11a
Subtract 12a^{2} from both sides.
-7a^{2}-6a+1=-11a
Combine 5a^{2} and -12a^{2} to get -7a^{2}.
-7a^{2}-6a+1+11a=0
Add 11a to both sides.
-7a^{2}+5a+1=0
Combine -6a and 11a to get 5a.
a=\frac{-5±\sqrt{5^{2}-4\left(-7\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-5±\sqrt{25-4\left(-7\right)}}{2\left(-7\right)}
Square 5.
a=\frac{-5±\sqrt{25+28}}{2\left(-7\right)}
Multiply -4 times -7.
a=\frac{-5±\sqrt{53}}{2\left(-7\right)}
Add 25 to 28.
a=\frac{-5±\sqrt{53}}{-14}
Multiply 2 times -7.
a=\frac{\sqrt{53}-5}{-14}
Now solve the equation a=\frac{-5±\sqrt{53}}{-14} when ± is plus. Add -5 to \sqrt{53}.
a=\frac{5-\sqrt{53}}{14}
Divide -5+\sqrt{53} by -14.
a=\frac{-\sqrt{53}-5}{-14}
Now solve the equation a=\frac{-5±\sqrt{53}}{-14} when ± is minus. Subtract \sqrt{53} from -5.
a=\frac{\sqrt{53}+5}{14}
Divide -5-\sqrt{53} by -14.
a=\frac{5-\sqrt{53}}{14} a=\frac{\sqrt{53}+5}{14}
The equation is now solved.
5a^{2}-6a+1=12a^{2}-5a-6a
Combine -a and -5a to get -6a.
5a^{2}-6a+1=12a^{2}-11a
Combine -5a and -6a to get -11a.
5a^{2}-6a+1-12a^{2}=-11a
Subtract 12a^{2} from both sides.
-7a^{2}-6a+1=-11a
Combine 5a^{2} and -12a^{2} to get -7a^{2}.
-7a^{2}-6a+1+11a=0
Add 11a to both sides.
-7a^{2}+5a+1=0
Combine -6a and 11a to get 5a.
-7a^{2}+5a=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-7a^{2}+5a}{-7}=-\frac{1}{-7}
Divide both sides by -7.
a^{2}+\frac{5}{-7}a=-\frac{1}{-7}
Dividing by -7 undoes the multiplication by -7.
a^{2}-\frac{5}{7}a=-\frac{1}{-7}
Divide 5 by -7.
a^{2}-\frac{5}{7}a=\frac{1}{7}
Divide -1 by -7.
a^{2}-\frac{5}{7}a+\left(-\frac{5}{14}\right)^{2}=\frac{1}{7}+\left(-\frac{5}{14}\right)^{2}
Divide -\frac{5}{7}, the coefficient of the x term, by 2 to get -\frac{5}{14}. Then add the square of -\frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{5}{7}a+\frac{25}{196}=\frac{1}{7}+\frac{25}{196}
Square -\frac{5}{14} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{5}{7}a+\frac{25}{196}=\frac{53}{196}
Add \frac{1}{7} to \frac{25}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{5}{14}\right)^{2}=\frac{53}{196}
Factor a^{2}-\frac{5}{7}a+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{14}\right)^{2}}=\sqrt{\frac{53}{196}}
Take the square root of both sides of the equation.
a-\frac{5}{14}=\frac{\sqrt{53}}{14} a-\frac{5}{14}=-\frac{\sqrt{53}}{14}
Simplify.
a=\frac{\sqrt{53}+5}{14} a=\frac{5-\sqrt{53}}{14}
Add \frac{5}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}