Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

5T+\frac{5}{4}T^{2}+\left(T^{2}+T-1\right)^{2}-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Use the distributive property to multiply 5T by 1+\frac{1}{4}T.
5T+\frac{5}{4}T^{2}+T^{4}+2T^{3}-T^{2}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Square T^{2}+T-1.
5T+\frac{1}{4}T^{2}+T^{4}+2T^{3}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{5}{4}T^{2} and -T^{2} to get \frac{1}{4}T^{2}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine 5T and -2T to get 3T.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T^{3}+3T^{2}+3T+1\right)-T^{2}\left(T+\frac{1}{2}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(T+1\right)^{3}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-T^{3}-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
To find the opposite of T^{3}+3T^{2}+3T+1, find the opposite of each term.
3T+\frac{1}{4}T^{2}+T^{4}+T^{3}+1-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 2T^{3} and -T^{3} to get T^{3}.
3T-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{1}{4}T^{2} and -3T^{2} to get -\frac{11}{4}T^{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 3T and -3T to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{2}\left(T+\frac{1}{2}\right)
Subtract 1 from 1 to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-\left(T^{3}+\frac{1}{2}T^{2}\right)
Use the distributive property to multiply T^{2} by T+\frac{1}{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{3}-\frac{1}{2}T^{2}
To find the opposite of T^{3}+\frac{1}{2}T^{2}, find the opposite of each term.
-\frac{11}{4}T^{2}+T^{4}-\frac{1}{2}T^{2}
Combine T^{3} and -T^{3} to get 0.
-\frac{13}{4}T^{2}+T^{4}
Combine -\frac{11}{4}T^{2} and -\frac{1}{2}T^{2} to get -\frac{13}{4}T^{2}.
5T+\frac{5}{4}T^{2}+\left(T^{2}+T-1\right)^{2}-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Use the distributive property to multiply 5T by 1+\frac{1}{4}T.
5T+\frac{5}{4}T^{2}+T^{4}+2T^{3}-T^{2}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Square T^{2}+T-1.
5T+\frac{1}{4}T^{2}+T^{4}+2T^{3}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{5}{4}T^{2} and -T^{2} to get \frac{1}{4}T^{2}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine 5T and -2T to get 3T.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T^{3}+3T^{2}+3T+1\right)-T^{2}\left(T+\frac{1}{2}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(T+1\right)^{3}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-T^{3}-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
To find the opposite of T^{3}+3T^{2}+3T+1, find the opposite of each term.
3T+\frac{1}{4}T^{2}+T^{4}+T^{3}+1-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 2T^{3} and -T^{3} to get T^{3}.
3T-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{1}{4}T^{2} and -3T^{2} to get -\frac{11}{4}T^{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 3T and -3T to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{2}\left(T+\frac{1}{2}\right)
Subtract 1 from 1 to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-\left(T^{3}+\frac{1}{2}T^{2}\right)
Use the distributive property to multiply T^{2} by T+\frac{1}{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{3}-\frac{1}{2}T^{2}
To find the opposite of T^{3}+\frac{1}{2}T^{2}, find the opposite of each term.
-\frac{11}{4}T^{2}+T^{4}-\frac{1}{2}T^{2}
Combine T^{3} and -T^{3} to get 0.
-\frac{13}{4}T^{2}+T^{4}
Combine -\frac{11}{4}T^{2} and -\frac{1}{2}T^{2} to get -\frac{13}{4}T^{2}.