Evaluate
T^{4}-\frac{13T^{2}}{4}
Expand
T^{4}-\frac{13T^{2}}{4}
Share
Copied to clipboard
5T+\frac{5}{4}T^{2}+\left(T^{2}+T-1\right)^{2}-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Use the distributive property to multiply 5T by 1+\frac{1}{4}T.
5T+\frac{5}{4}T^{2}+T^{4}+2T^{3}-T^{2}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Square T^{2}+T-1.
5T+\frac{1}{4}T^{2}+T^{4}+2T^{3}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{5}{4}T^{2} and -T^{2} to get \frac{1}{4}T^{2}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine 5T and -2T to get 3T.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T^{3}+3T^{2}+3T+1\right)-T^{2}\left(T+\frac{1}{2}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(T+1\right)^{3}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-T^{3}-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
To find the opposite of T^{3}+3T^{2}+3T+1, find the opposite of each term.
3T+\frac{1}{4}T^{2}+T^{4}+T^{3}+1-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 2T^{3} and -T^{3} to get T^{3}.
3T-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{1}{4}T^{2} and -3T^{2} to get -\frac{11}{4}T^{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 3T and -3T to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{2}\left(T+\frac{1}{2}\right)
Subtract 1 from 1 to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-\left(T^{3}+\frac{1}{2}T^{2}\right)
Use the distributive property to multiply T^{2} by T+\frac{1}{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{3}-\frac{1}{2}T^{2}
To find the opposite of T^{3}+\frac{1}{2}T^{2}, find the opposite of each term.
-\frac{11}{4}T^{2}+T^{4}-\frac{1}{2}T^{2}
Combine T^{3} and -T^{3} to get 0.
-\frac{13}{4}T^{2}+T^{4}
Combine -\frac{11}{4}T^{2} and -\frac{1}{2}T^{2} to get -\frac{13}{4}T^{2}.
5T+\frac{5}{4}T^{2}+\left(T^{2}+T-1\right)^{2}-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Use the distributive property to multiply 5T by 1+\frac{1}{4}T.
5T+\frac{5}{4}T^{2}+T^{4}+2T^{3}-T^{2}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Square T^{2}+T-1.
5T+\frac{1}{4}T^{2}+T^{4}+2T^{3}-2T+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{5}{4}T^{2} and -T^{2} to get \frac{1}{4}T^{2}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T+1\right)^{3}-T^{2}\left(T+\frac{1}{2}\right)
Combine 5T and -2T to get 3T.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-\left(T^{3}+3T^{2}+3T+1\right)-T^{2}\left(T+\frac{1}{2}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(T+1\right)^{3}.
3T+\frac{1}{4}T^{2}+T^{4}+2T^{3}+1-T^{3}-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
To find the opposite of T^{3}+3T^{2}+3T+1, find the opposite of each term.
3T+\frac{1}{4}T^{2}+T^{4}+T^{3}+1-3T^{2}-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 2T^{3} and -T^{3} to get T^{3}.
3T-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-3T-1-T^{2}\left(T+\frac{1}{2}\right)
Combine \frac{1}{4}T^{2} and -3T^{2} to get -\frac{11}{4}T^{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}+1-1-T^{2}\left(T+\frac{1}{2}\right)
Combine 3T and -3T to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{2}\left(T+\frac{1}{2}\right)
Subtract 1 from 1 to get 0.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-\left(T^{3}+\frac{1}{2}T^{2}\right)
Use the distributive property to multiply T^{2} by T+\frac{1}{2}.
-\frac{11}{4}T^{2}+T^{4}+T^{3}-T^{3}-\frac{1}{2}T^{2}
To find the opposite of T^{3}+\frac{1}{2}T^{2}, find the opposite of each term.
-\frac{11}{4}T^{2}+T^{4}-\frac{1}{2}T^{2}
Combine T^{3} and -T^{3} to get 0.
-\frac{13}{4}T^{2}+T^{4}
Combine -\frac{11}{4}T^{2} and -\frac{1}{2}T^{2} to get -\frac{13}{4}T^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}