Solve for a
a = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
a=1
Share
Copied to clipboard
5-a-3a^{2}=1
Subtract 3a^{2} from both sides.
5-a-3a^{2}-1=0
Subtract 1 from both sides.
4-a-3a^{2}=0
Subtract 1 from 5 to get 4.
-3a^{2}-a+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=-3\times 4=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3a^{2}+aa+ba+4. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=3 b=-4
The solution is the pair that gives sum -1.
\left(-3a^{2}+3a\right)+\left(-4a+4\right)
Rewrite -3a^{2}-a+4 as \left(-3a^{2}+3a\right)+\left(-4a+4\right).
3a\left(-a+1\right)+4\left(-a+1\right)
Factor out 3a in the first and 4 in the second group.
\left(-a+1\right)\left(3a+4\right)
Factor out common term -a+1 by using distributive property.
a=1 a=-\frac{4}{3}
To find equation solutions, solve -a+1=0 and 3a+4=0.
5-a-3a^{2}=1
Subtract 3a^{2} from both sides.
5-a-3a^{2}-1=0
Subtract 1 from both sides.
4-a-3a^{2}=0
Subtract 1 from 5 to get 4.
-3a^{2}-a+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 4}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1+12\times 4}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-\left(-1\right)±\sqrt{1+48}}{2\left(-3\right)}
Multiply 12 times 4.
a=\frac{-\left(-1\right)±\sqrt{49}}{2\left(-3\right)}
Add 1 to 48.
a=\frac{-\left(-1\right)±7}{2\left(-3\right)}
Take the square root of 49.
a=\frac{1±7}{2\left(-3\right)}
The opposite of -1 is 1.
a=\frac{1±7}{-6}
Multiply 2 times -3.
a=\frac{8}{-6}
Now solve the equation a=\frac{1±7}{-6} when ± is plus. Add 1 to 7.
a=-\frac{4}{3}
Reduce the fraction \frac{8}{-6} to lowest terms by extracting and canceling out 2.
a=-\frac{6}{-6}
Now solve the equation a=\frac{1±7}{-6} when ± is minus. Subtract 7 from 1.
a=1
Divide -6 by -6.
a=-\frac{4}{3} a=1
The equation is now solved.
5-a-3a^{2}=1
Subtract 3a^{2} from both sides.
-a-3a^{2}=1-5
Subtract 5 from both sides.
-a-3a^{2}=-4
Subtract 5 from 1 to get -4.
-3a^{2}-a=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3a^{2}-a}{-3}=-\frac{4}{-3}
Divide both sides by -3.
a^{2}+\left(-\frac{1}{-3}\right)a=-\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}+\frac{1}{3}a=-\frac{4}{-3}
Divide -1 by -3.
a^{2}+\frac{1}{3}a=\frac{4}{3}
Divide -4 by -3.
a^{2}+\frac{1}{3}a+\left(\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{1}{3}a+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{1}{3}a+\frac{1}{36}=\frac{49}{36}
Add \frac{4}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{1}{6}\right)^{2}=\frac{49}{36}
Factor a^{2}+\frac{1}{3}a+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
a+\frac{1}{6}=\frac{7}{6} a+\frac{1}{6}=-\frac{7}{6}
Simplify.
a=1 a=-\frac{4}{3}
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}