5 - 7 \frac { 3 } { 5 } + ( - 5,1 ) + | - 2,9 | =
Evaluate
-4,8
Factor
-4,8
Share
Copied to clipboard
5-\frac{35+3}{5}-5,1+|-2,9|
Multiply 7 and 5 to get 35.
5-\frac{38}{5}-5,1+|-2,9|
Add 35 and 3 to get 38.
\frac{25}{5}-\frac{38}{5}-5,1+|-2,9|
Convert 5 to fraction \frac{25}{5}.
\frac{25-38}{5}-5,1+|-2,9|
Since \frac{25}{5} and \frac{38}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{5}-5,1+|-2,9|
Subtract 38 from 25 to get -13.
-\frac{13}{5}-\frac{51}{10}+|-2,9|
Convert decimal number 5,1 to fraction \frac{51}{10}.
-\frac{26}{10}-\frac{51}{10}+|-2,9|
Least common multiple of 5 and 10 is 10. Convert -\frac{13}{5} and \frac{51}{10} to fractions with denominator 10.
\frac{-26-51}{10}+|-2,9|
Since -\frac{26}{10} and \frac{51}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{77}{10}+|-2,9|
Subtract 51 from -26 to get -77.
-\frac{77}{10}+2,9
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -2,9 is 2,9.
-\frac{77}{10}+\frac{29}{10}
Convert decimal number 2,9 to fraction \frac{29}{10}.
\frac{-77+29}{10}
Since -\frac{77}{10} and \frac{29}{10} have the same denominator, add them by adding their numerators.
\frac{-48}{10}
Add -77 and 29 to get -48.
-\frac{24}{5}
Reduce the fraction \frac{-48}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}