Solve for x
x = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
Graph
Share
Copied to clipboard
9-2x=\frac{1}{3}
Add 5 and 4 to get 9.
-2x=\frac{1}{3}-9
Subtract 9 from both sides.
-2x=\frac{1}{3}-\frac{27}{3}
Convert 9 to fraction \frac{27}{3}.
-2x=\frac{1-27}{3}
Since \frac{1}{3} and \frac{27}{3} have the same denominator, subtract them by subtracting their numerators.
-2x=-\frac{26}{3}
Subtract 27 from 1 to get -26.
x=\frac{-\frac{26}{3}}{-2}
Divide both sides by -2.
x=\frac{-26}{3\left(-2\right)}
Express \frac{-\frac{26}{3}}{-2} as a single fraction.
x=\frac{-26}{-6}
Multiply 3 and -2 to get -6.
x=\frac{13}{3}
Reduce the fraction \frac{-26}{-6} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}