Solve for p
p=1-q
Solve for q
q=1-p
Share
Copied to clipboard
5-10p-10q=-5
Use the distributive property to multiply -10 by p+q.
-10p-10q=-5-5
Subtract 5 from both sides.
-10p-10q=-10
Subtract 5 from -5 to get -10.
-10p=-10+10q
Add 10q to both sides.
-10p=10q-10
The equation is in standard form.
\frac{-10p}{-10}=\frac{10q-10}{-10}
Divide both sides by -10.
p=\frac{10q-10}{-10}
Dividing by -10 undoes the multiplication by -10.
p=1-q
Divide -10+10q by -10.
5-10p-10q=-5
Use the distributive property to multiply -10 by p+q.
-10p-10q=-5-5
Subtract 5 from both sides.
-10p-10q=-10
Subtract 5 from -5 to get -10.
-10q=-10+10p
Add 10p to both sides.
-10q=10p-10
The equation is in standard form.
\frac{-10q}{-10}=\frac{10p-10}{-10}
Divide both sides by -10.
q=\frac{10p-10}{-10}
Dividing by -10 undoes the multiplication by -10.
q=1-p
Divide -10+10p by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}