Solve for x
x=7-\sqrt{21}\approx 2.417424305
Graph
Share
Copied to clipboard
-\sqrt{4x-3}=x-5
Subtract 5 from both sides of the equation.
\left(-\sqrt{4x-3}\right)^{2}=\left(x-5\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{4x-3}\right)^{2}=\left(x-5\right)^{2}
Expand \left(-\sqrt{4x-3}\right)^{2}.
1\left(\sqrt{4x-3}\right)^{2}=\left(x-5\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(4x-3\right)=\left(x-5\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
4x-3=\left(x-5\right)^{2}
Use the distributive property to multiply 1 by 4x-3.
4x-3=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x-3-x^{2}=-10x+25
Subtract x^{2} from both sides.
4x-3-x^{2}+10x=25
Add 10x to both sides.
14x-3-x^{2}=25
Combine 4x and 10x to get 14x.
14x-3-x^{2}-25=0
Subtract 25 from both sides.
14x-28-x^{2}=0
Subtract 25 from -3 to get -28.
-x^{2}+14x-28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 14 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
Square 14.
x=\frac{-14±\sqrt{196+4\left(-28\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-14±\sqrt{196-112}}{2\left(-1\right)}
Multiply 4 times -28.
x=\frac{-14±\sqrt{84}}{2\left(-1\right)}
Add 196 to -112.
x=\frac{-14±2\sqrt{21}}{2\left(-1\right)}
Take the square root of 84.
x=\frac{-14±2\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{21}-14}{-2}
Now solve the equation x=\frac{-14±2\sqrt{21}}{-2} when ± is plus. Add -14 to 2\sqrt{21}.
x=7-\sqrt{21}
Divide -14+2\sqrt{21} by -2.
x=\frac{-2\sqrt{21}-14}{-2}
Now solve the equation x=\frac{-14±2\sqrt{21}}{-2} when ± is minus. Subtract 2\sqrt{21} from -14.
x=\sqrt{21}+7
Divide -14-2\sqrt{21} by -2.
x=7-\sqrt{21} x=\sqrt{21}+7
The equation is now solved.
5-\sqrt{4\left(7-\sqrt{21}\right)-3}=7-\sqrt{21}
Substitute 7-\sqrt{21} for x in the equation 5-\sqrt{4x-3}=x.
7-21^{\frac{1}{2}}=7-21^{\frac{1}{2}}
Simplify. The value x=7-\sqrt{21} satisfies the equation.
5-\sqrt{4\left(\sqrt{21}+7\right)-3}=\sqrt{21}+7
Substitute \sqrt{21}+7 for x in the equation 5-\sqrt{4x-3}=x.
3-21^{\frac{1}{2}}=21^{\frac{1}{2}}+7
Simplify. The value x=\sqrt{21}+7 does not satisfy the equation because the left and the right hand side have opposite signs.
x=7-\sqrt{21}
Equation -\sqrt{4x-3}=x-5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}