Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}+8x+16\right)=2\left(x+1\right)^{2}-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
5x^{2}+40x+80=2\left(x+1\right)^{2}-27
Use the distributive property to multiply 5 by x^{2}+8x+16.
5x^{2}+40x+80=2\left(x^{2}+2x+1\right)-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x^{2}+40x+80=2x^{2}+4x+2-27
Use the distributive property to multiply 2 by x^{2}+2x+1.
5x^{2}+40x+80=2x^{2}+4x-25
Subtract 27 from 2 to get -25.
5x^{2}+40x+80-2x^{2}=4x-25
Subtract 2x^{2} from both sides.
3x^{2}+40x+80=4x-25
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+40x+80-4x=-25
Subtract 4x from both sides.
3x^{2}+36x+80=-25
Combine 40x and -4x to get 36x.
3x^{2}+36x+80+25=0
Add 25 to both sides.
3x^{2}+36x+105=0
Add 80 and 25 to get 105.
x^{2}+12x+35=0
Divide both sides by 3.
a+b=12 ab=1\times 35=35
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+35. To find a and b, set up a system to be solved.
1,35 5,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 35.
1+35=36 5+7=12
Calculate the sum for each pair.
a=5 b=7
The solution is the pair that gives sum 12.
\left(x^{2}+5x\right)+\left(7x+35\right)
Rewrite x^{2}+12x+35 as \left(x^{2}+5x\right)+\left(7x+35\right).
x\left(x+5\right)+7\left(x+5\right)
Factor out x in the first and 7 in the second group.
\left(x+5\right)\left(x+7\right)
Factor out common term x+5 by using distributive property.
x=-5 x=-7
To find equation solutions, solve x+5=0 and x+7=0.
5\left(x^{2}+8x+16\right)=2\left(x+1\right)^{2}-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
5x^{2}+40x+80=2\left(x+1\right)^{2}-27
Use the distributive property to multiply 5 by x^{2}+8x+16.
5x^{2}+40x+80=2\left(x^{2}+2x+1\right)-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x^{2}+40x+80=2x^{2}+4x+2-27
Use the distributive property to multiply 2 by x^{2}+2x+1.
5x^{2}+40x+80=2x^{2}+4x-25
Subtract 27 from 2 to get -25.
5x^{2}+40x+80-2x^{2}=4x-25
Subtract 2x^{2} from both sides.
3x^{2}+40x+80=4x-25
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+40x+80-4x=-25
Subtract 4x from both sides.
3x^{2}+36x+80=-25
Combine 40x and -4x to get 36x.
3x^{2}+36x+80+25=0
Add 25 to both sides.
3x^{2}+36x+105=0
Add 80 and 25 to get 105.
x=\frac{-36±\sqrt{36^{2}-4\times 3\times 105}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 36 for b, and 105 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 3\times 105}}{2\times 3}
Square 36.
x=\frac{-36±\sqrt{1296-12\times 105}}{2\times 3}
Multiply -4 times 3.
x=\frac{-36±\sqrt{1296-1260}}{2\times 3}
Multiply -12 times 105.
x=\frac{-36±\sqrt{36}}{2\times 3}
Add 1296 to -1260.
x=\frac{-36±6}{2\times 3}
Take the square root of 36.
x=\frac{-36±6}{6}
Multiply 2 times 3.
x=-\frac{30}{6}
Now solve the equation x=\frac{-36±6}{6} when ± is plus. Add -36 to 6.
x=-5
Divide -30 by 6.
x=-\frac{42}{6}
Now solve the equation x=\frac{-36±6}{6} when ± is minus. Subtract 6 from -36.
x=-7
Divide -42 by 6.
x=-5 x=-7
The equation is now solved.
5\left(x^{2}+8x+16\right)=2\left(x+1\right)^{2}-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
5x^{2}+40x+80=2\left(x+1\right)^{2}-27
Use the distributive property to multiply 5 by x^{2}+8x+16.
5x^{2}+40x+80=2\left(x^{2}+2x+1\right)-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x^{2}+40x+80=2x^{2}+4x+2-27
Use the distributive property to multiply 2 by x^{2}+2x+1.
5x^{2}+40x+80=2x^{2}+4x-25
Subtract 27 from 2 to get -25.
5x^{2}+40x+80-2x^{2}=4x-25
Subtract 2x^{2} from both sides.
3x^{2}+40x+80=4x-25
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+40x+80-4x=-25
Subtract 4x from both sides.
3x^{2}+36x+80=-25
Combine 40x and -4x to get 36x.
3x^{2}+36x=-25-80
Subtract 80 from both sides.
3x^{2}+36x=-105
Subtract 80 from -25 to get -105.
\frac{3x^{2}+36x}{3}=-\frac{105}{3}
Divide both sides by 3.
x^{2}+\frac{36}{3}x=-\frac{105}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+12x=-\frac{105}{3}
Divide 36 by 3.
x^{2}+12x=-35
Divide -105 by 3.
x^{2}+12x+6^{2}=-35+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-35+36
Square 6.
x^{2}+12x+36=1
Add -35 to 36.
\left(x+6\right)^{2}=1
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+6=1 x+6=-1
Simplify.
x=-5 x=-7
Subtract 6 from both sides of the equation.