Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}+4x+4\right)=\left(7x+3\right)\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
5x^{2}+20x+20=\left(7x+3\right)\left(x+2\right)
Use the distributive property to multiply 5 by x^{2}+4x+4.
5x^{2}+20x+20=7x^{2}+17x+6
Use the distributive property to multiply 7x+3 by x+2 and combine like terms.
5x^{2}+20x+20-7x^{2}=17x+6
Subtract 7x^{2} from both sides.
-2x^{2}+20x+20=17x+6
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
-2x^{2}+20x+20-17x=6
Subtract 17x from both sides.
-2x^{2}+3x+20=6
Combine 20x and -17x to get 3x.
-2x^{2}+3x+20-6=0
Subtract 6 from both sides.
-2x^{2}+3x+14=0
Subtract 6 from 20 to get 14.
a+b=3 ab=-2\times 14=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=7 b=-4
The solution is the pair that gives sum 3.
\left(-2x^{2}+7x\right)+\left(-4x+14\right)
Rewrite -2x^{2}+3x+14 as \left(-2x^{2}+7x\right)+\left(-4x+14\right).
-x\left(2x-7\right)-2\left(2x-7\right)
Factor out -x in the first and -2 in the second group.
\left(2x-7\right)\left(-x-2\right)
Factor out common term 2x-7 by using distributive property.
x=\frac{7}{2} x=-2
To find equation solutions, solve 2x-7=0 and -x-2=0.
5\left(x^{2}+4x+4\right)=\left(7x+3\right)\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
5x^{2}+20x+20=\left(7x+3\right)\left(x+2\right)
Use the distributive property to multiply 5 by x^{2}+4x+4.
5x^{2}+20x+20=7x^{2}+17x+6
Use the distributive property to multiply 7x+3 by x+2 and combine like terms.
5x^{2}+20x+20-7x^{2}=17x+6
Subtract 7x^{2} from both sides.
-2x^{2}+20x+20=17x+6
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
-2x^{2}+20x+20-17x=6
Subtract 17x from both sides.
-2x^{2}+3x+20=6
Combine 20x and -17x to get 3x.
-2x^{2}+3x+20-6=0
Subtract 6 from both sides.
-2x^{2}+3x+14=0
Subtract 6 from 20 to get 14.
x=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\times 14}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-2\right)\times 14}}{2\left(-2\right)}
Square 3.
x=\frac{-3±\sqrt{9+8\times 14}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-3±\sqrt{9+112}}{2\left(-2\right)}
Multiply 8 times 14.
x=\frac{-3±\sqrt{121}}{2\left(-2\right)}
Add 9 to 112.
x=\frac{-3±11}{2\left(-2\right)}
Take the square root of 121.
x=\frac{-3±11}{-4}
Multiply 2 times -2.
x=\frac{8}{-4}
Now solve the equation x=\frac{-3±11}{-4} when ± is plus. Add -3 to 11.
x=-2
Divide 8 by -4.
x=-\frac{14}{-4}
Now solve the equation x=\frac{-3±11}{-4} when ± is minus. Subtract 11 from -3.
x=\frac{7}{2}
Reduce the fraction \frac{-14}{-4} to lowest terms by extracting and canceling out 2.
x=-2 x=\frac{7}{2}
The equation is now solved.
5\left(x^{2}+4x+4\right)=\left(7x+3\right)\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
5x^{2}+20x+20=\left(7x+3\right)\left(x+2\right)
Use the distributive property to multiply 5 by x^{2}+4x+4.
5x^{2}+20x+20=7x^{2}+17x+6
Use the distributive property to multiply 7x+3 by x+2 and combine like terms.
5x^{2}+20x+20-7x^{2}=17x+6
Subtract 7x^{2} from both sides.
-2x^{2}+20x+20=17x+6
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
-2x^{2}+20x+20-17x=6
Subtract 17x from both sides.
-2x^{2}+3x+20=6
Combine 20x and -17x to get 3x.
-2x^{2}+3x=6-20
Subtract 20 from both sides.
-2x^{2}+3x=-14
Subtract 20 from 6 to get -14.
\frac{-2x^{2}+3x}{-2}=-\frac{14}{-2}
Divide both sides by -2.
x^{2}+\frac{3}{-2}x=-\frac{14}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{3}{2}x=-\frac{14}{-2}
Divide 3 by -2.
x^{2}-\frac{3}{2}x=7
Divide -14 by -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=7+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
Add 7 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{121}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{11}{4} x-\frac{3}{4}=-\frac{11}{4}
Simplify.
x=\frac{7}{2} x=-2
Add \frac{3}{4} to both sides of the equation.