Solve for t
t=\frac{10}{13}\approx 0.769230769
Share
Copied to clipboard
5t^{2}-15t+10=t\left(5t-2\right)
Use the distributive property to multiply 5 by t^{2}-3t+2.
5t^{2}-15t+10=5t^{2}-2t
Use the distributive property to multiply t by 5t-2.
5t^{2}-15t+10-5t^{2}=-2t
Subtract 5t^{2} from both sides.
-15t+10=-2t
Combine 5t^{2} and -5t^{2} to get 0.
-15t+10+2t=0
Add 2t to both sides.
-13t+10=0
Combine -15t and 2t to get -13t.
-13t=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
t=\frac{-10}{-13}
Divide both sides by -13.
t=\frac{10}{13}
Fraction \frac{-10}{-13} can be simplified to \frac{10}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}