Solve for x
x=-\frac{2}{3}\approx -0.666666667
x=-1
Graph
Share
Copied to clipboard
5\left(9x^{2}+12x+4\right)=9x^{2}-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
45x^{2}+60x+20=9x^{2}-4
Use the distributive property to multiply 5 by 9x^{2}+12x+4.
45x^{2}+60x+20-9x^{2}=-4
Subtract 9x^{2} from both sides.
36x^{2}+60x+20=-4
Combine 45x^{2} and -9x^{2} to get 36x^{2}.
36x^{2}+60x+20+4=0
Add 4 to both sides.
36x^{2}+60x+24=0
Add 20 and 4 to get 24.
3x^{2}+5x+2=0
Divide both sides by 12.
a+b=5 ab=3\times 2=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=2 b=3
The solution is the pair that gives sum 5.
\left(3x^{2}+2x\right)+\left(3x+2\right)
Rewrite 3x^{2}+5x+2 as \left(3x^{2}+2x\right)+\left(3x+2\right).
x\left(3x+2\right)+3x+2
Factor out x in 3x^{2}+2x.
\left(3x+2\right)\left(x+1\right)
Factor out common term 3x+2 by using distributive property.
x=-\frac{2}{3} x=-1
To find equation solutions, solve 3x+2=0 and x+1=0.
5\left(9x^{2}+12x+4\right)=9x^{2}-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
45x^{2}+60x+20=9x^{2}-4
Use the distributive property to multiply 5 by 9x^{2}+12x+4.
45x^{2}+60x+20-9x^{2}=-4
Subtract 9x^{2} from both sides.
36x^{2}+60x+20=-4
Combine 45x^{2} and -9x^{2} to get 36x^{2}.
36x^{2}+60x+20+4=0
Add 4 to both sides.
36x^{2}+60x+24=0
Add 20 and 4 to get 24.
x=\frac{-60±\sqrt{60^{2}-4\times 36\times 24}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 60 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 36\times 24}}{2\times 36}
Square 60.
x=\frac{-60±\sqrt{3600-144\times 24}}{2\times 36}
Multiply -4 times 36.
x=\frac{-60±\sqrt{3600-3456}}{2\times 36}
Multiply -144 times 24.
x=\frac{-60±\sqrt{144}}{2\times 36}
Add 3600 to -3456.
x=\frac{-60±12}{2\times 36}
Take the square root of 144.
x=\frac{-60±12}{72}
Multiply 2 times 36.
x=-\frac{48}{72}
Now solve the equation x=\frac{-60±12}{72} when ± is plus. Add -60 to 12.
x=-\frac{2}{3}
Reduce the fraction \frac{-48}{72} to lowest terms by extracting and canceling out 24.
x=-\frac{72}{72}
Now solve the equation x=\frac{-60±12}{72} when ± is minus. Subtract 12 from -60.
x=-1
Divide -72 by 72.
x=-\frac{2}{3} x=-1
The equation is now solved.
5\left(9x^{2}+12x+4\right)=9x^{2}-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
45x^{2}+60x+20=9x^{2}-4
Use the distributive property to multiply 5 by 9x^{2}+12x+4.
45x^{2}+60x+20-9x^{2}=-4
Subtract 9x^{2} from both sides.
36x^{2}+60x+20=-4
Combine 45x^{2} and -9x^{2} to get 36x^{2}.
36x^{2}+60x=-4-20
Subtract 20 from both sides.
36x^{2}+60x=-24
Subtract 20 from -4 to get -24.
\frac{36x^{2}+60x}{36}=-\frac{24}{36}
Divide both sides by 36.
x^{2}+\frac{60}{36}x=-\frac{24}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{5}{3}x=-\frac{24}{36}
Reduce the fraction \frac{60}{36} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{5}{3}x=-\frac{2}{3}
Reduce the fraction \frac{-24}{36} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{2}{3}+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{1}{36}
Add -\frac{2}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{1}{6} x+\frac{5}{6}=-\frac{1}{6}
Simplify.
x=-\frac{2}{3} x=-1
Subtract \frac{5}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}