Factor
\left(y+2\right)\left(5y+7\right)
Evaluate
\left(y+2\right)\left(5y+7\right)
Graph
Share
Copied to clipboard
a+b=17 ab=5\times 14=70
Factor the expression by grouping. First, the expression needs to be rewritten as 5y^{2}+ay+by+14. To find a and b, set up a system to be solved.
1,70 2,35 5,14 7,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 70.
1+70=71 2+35=37 5+14=19 7+10=17
Calculate the sum for each pair.
a=7 b=10
The solution is the pair that gives sum 17.
\left(5y^{2}+7y\right)+\left(10y+14\right)
Rewrite 5y^{2}+17y+14 as \left(5y^{2}+7y\right)+\left(10y+14\right).
y\left(5y+7\right)+2\left(5y+7\right)
Factor out y in the first and 2 in the second group.
\left(5y+7\right)\left(y+2\right)
Factor out common term 5y+7 by using distributive property.
5y^{2}+17y+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-17±\sqrt{17^{2}-4\times 5\times 14}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-17±\sqrt{289-4\times 5\times 14}}{2\times 5}
Square 17.
y=\frac{-17±\sqrt{289-20\times 14}}{2\times 5}
Multiply -4 times 5.
y=\frac{-17±\sqrt{289-280}}{2\times 5}
Multiply -20 times 14.
y=\frac{-17±\sqrt{9}}{2\times 5}
Add 289 to -280.
y=\frac{-17±3}{2\times 5}
Take the square root of 9.
y=\frac{-17±3}{10}
Multiply 2 times 5.
y=-\frac{14}{10}
Now solve the equation y=\frac{-17±3}{10} when ± is plus. Add -17 to 3.
y=-\frac{7}{5}
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
y=-\frac{20}{10}
Now solve the equation y=\frac{-17±3}{10} when ± is minus. Subtract 3 from -17.
y=-2
Divide -20 by 10.
5y^{2}+17y+14=5\left(y-\left(-\frac{7}{5}\right)\right)\left(y-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{5} for x_{1} and -2 for x_{2}.
5y^{2}+17y+14=5\left(y+\frac{7}{5}\right)\left(y+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5y^{2}+17y+14=5\times \frac{5y+7}{5}\left(y+2\right)
Add \frac{7}{5} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
5y^{2}+17y+14=\left(5y+7\right)\left(y+2\right)
Cancel out 5, the greatest common factor in 5 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}