Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-8x\left(2+14x\right)-108=-x
Subtract 108 from both sides.
5x^{2}-8x\left(2+14x\right)-108+x=0
Add x to both sides.
5x^{2}-16x-112x^{2}-108+x=0
Use the distributive property to multiply -8x by 2+14x.
-107x^{2}-16x-108+x=0
Combine 5x^{2} and -112x^{2} to get -107x^{2}.
-107x^{2}-15x-108=0
Combine -16x and x to get -15x.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-107\right)\left(-108\right)}}{2\left(-107\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -107 for a, -15 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-107\right)\left(-108\right)}}{2\left(-107\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+428\left(-108\right)}}{2\left(-107\right)}
Multiply -4 times -107.
x=\frac{-\left(-15\right)±\sqrt{225-46224}}{2\left(-107\right)}
Multiply 428 times -108.
x=\frac{-\left(-15\right)±\sqrt{-45999}}{2\left(-107\right)}
Add 225 to -46224.
x=\frac{-\left(-15\right)±3\sqrt{5111}i}{2\left(-107\right)}
Take the square root of -45999.
x=\frac{15±3\sqrt{5111}i}{2\left(-107\right)}
The opposite of -15 is 15.
x=\frac{15±3\sqrt{5111}i}{-214}
Multiply 2 times -107.
x=\frac{15+3\sqrt{5111}i}{-214}
Now solve the equation x=\frac{15±3\sqrt{5111}i}{-214} when ± is plus. Add 15 to 3i\sqrt{5111}.
x=\frac{-3\sqrt{5111}i-15}{214}
Divide 15+3i\sqrt{5111} by -214.
x=\frac{-3\sqrt{5111}i+15}{-214}
Now solve the equation x=\frac{15±3\sqrt{5111}i}{-214} when ± is minus. Subtract 3i\sqrt{5111} from 15.
x=\frac{-15+3\sqrt{5111}i}{214}
Divide 15-3i\sqrt{5111} by -214.
x=\frac{-3\sqrt{5111}i-15}{214} x=\frac{-15+3\sqrt{5111}i}{214}
The equation is now solved.
5x^{2}-8x\left(2+14x\right)+x=108
Add x to both sides.
5x^{2}-16x-112x^{2}+x=108
Use the distributive property to multiply -8x by 2+14x.
-107x^{2}-16x+x=108
Combine 5x^{2} and -112x^{2} to get -107x^{2}.
-107x^{2}-15x=108
Combine -16x and x to get -15x.
\frac{-107x^{2}-15x}{-107}=\frac{108}{-107}
Divide both sides by -107.
x^{2}+\left(-\frac{15}{-107}\right)x=\frac{108}{-107}
Dividing by -107 undoes the multiplication by -107.
x^{2}+\frac{15}{107}x=\frac{108}{-107}
Divide -15 by -107.
x^{2}+\frac{15}{107}x=-\frac{108}{107}
Divide 108 by -107.
x^{2}+\frac{15}{107}x+\left(\frac{15}{214}\right)^{2}=-\frac{108}{107}+\left(\frac{15}{214}\right)^{2}
Divide \frac{15}{107}, the coefficient of the x term, by 2 to get \frac{15}{214}. Then add the square of \frac{15}{214} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{107}x+\frac{225}{45796}=-\frac{108}{107}+\frac{225}{45796}
Square \frac{15}{214} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{107}x+\frac{225}{45796}=-\frac{45999}{45796}
Add -\frac{108}{107} to \frac{225}{45796} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{214}\right)^{2}=-\frac{45999}{45796}
Factor x^{2}+\frac{15}{107}x+\frac{225}{45796}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{214}\right)^{2}}=\sqrt{-\frac{45999}{45796}}
Take the square root of both sides of the equation.
x+\frac{15}{214}=\frac{3\sqrt{5111}i}{214} x+\frac{15}{214}=-\frac{3\sqrt{5111}i}{214}
Simplify.
x=\frac{-15+3\sqrt{5111}i}{214} x=\frac{-3\sqrt{5111}i-15}{214}
Subtract \frac{15}{214} from both sides of the equation.