Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-6x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5\left(-1\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5\left(-1\right)}}{2\times 5}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-20\left(-1\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\times 5}
Multiply -20 times -1.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\times 5}
Add 36 to 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\times 5}
Take the square root of 56.
x=\frac{6±2\sqrt{14}}{2\times 5}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{14}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{14}+6}{10}
Now solve the equation x=\frac{6±2\sqrt{14}}{10} when ± is plus. Add 6 to 2\sqrt{14}.
x=\frac{\sqrt{14}+3}{5}
Divide 6+2\sqrt{14} by 10.
x=\frac{6-2\sqrt{14}}{10}
Now solve the equation x=\frac{6±2\sqrt{14}}{10} when ± is minus. Subtract 2\sqrt{14} from 6.
x=\frac{3-\sqrt{14}}{5}
Divide 6-2\sqrt{14} by 10.
x=\frac{\sqrt{14}+3}{5} x=\frac{3-\sqrt{14}}{5}
The equation is now solved.
5x^{2}-6x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-6x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
5x^{2}-6x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
5x^{2}-6x=1
Subtract -1 from 0.
\frac{5x^{2}-6x}{5}=\frac{1}{5}
Divide both sides by 5.
x^{2}-\frac{6}{5}x=\frac{1}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\frac{1}{5}+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{1}{5}+\frac{9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{14}{25}
Add \frac{1}{5} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{5}\right)^{2}=\frac{14}{25}
Factor x^{2}-\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{14}{25}}
Take the square root of both sides of the equation.
x-\frac{3}{5}=\frac{\sqrt{14}}{5} x-\frac{3}{5}=-\frac{\sqrt{14}}{5}
Simplify.
x=\frac{\sqrt{14}+3}{5} x=\frac{3-\sqrt{14}}{5}
Add \frac{3}{5} to both sides of the equation.