Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-5x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5}}{2\times 5}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-20}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-5\right)±\sqrt{5}}{2\times 5}
Add 25 to -20.
x=\frac{5±\sqrt{5}}{2\times 5}
The opposite of -5 is 5.
x=\frac{5±\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{5}+5}{10}
Now solve the equation x=\frac{5±\sqrt{5}}{10} when ± is plus. Add 5 to \sqrt{5}.
x=\frac{\sqrt{5}}{10}+\frac{1}{2}
Divide 5+\sqrt{5} by 10.
x=\frac{5-\sqrt{5}}{10}
Now solve the equation x=\frac{5±\sqrt{5}}{10} when ± is minus. Subtract \sqrt{5} from 5.
x=-\frac{\sqrt{5}}{10}+\frac{1}{2}
Divide 5-\sqrt{5} by 10.
x=\frac{\sqrt{5}}{10}+\frac{1}{2} x=-\frac{\sqrt{5}}{10}+\frac{1}{2}
The equation is now solved.
5x^{2}-5x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-5x+1-1=-1
Subtract 1 from both sides of the equation.
5x^{2}-5x=-1
Subtracting 1 from itself leaves 0.
\frac{5x^{2}-5x}{5}=-\frac{1}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{5}{5}\right)x=-\frac{1}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-x=-\frac{1}{5}
Divide -5 by 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{5}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{1}{5}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1}{20}
Add -\frac{1}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{20}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{20}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{5}}{10} x-\frac{1}{2}=-\frac{\sqrt{5}}{10}
Simplify.
x=\frac{\sqrt{5}}{10}+\frac{1}{2} x=-\frac{\sqrt{5}}{10}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.