Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-41 ab=5\times 42=210
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx+42. To find a and b, set up a system to be solved.
-1,-210 -2,-105 -3,-70 -5,-42 -6,-35 -7,-30 -10,-21 -14,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 210.
-1-210=-211 -2-105=-107 -3-70=-73 -5-42=-47 -6-35=-41 -7-30=-37 -10-21=-31 -14-15=-29
Calculate the sum for each pair.
a=-35 b=-6
The solution is the pair that gives sum -41.
\left(5x^{2}-35x\right)+\left(-6x+42\right)
Rewrite 5x^{2}-41x+42 as \left(5x^{2}-35x\right)+\left(-6x+42\right).
5x\left(x-7\right)-6\left(x-7\right)
Factor out 5x in the first and -6 in the second group.
\left(x-7\right)\left(5x-6\right)
Factor out common term x-7 by using distributive property.
5x^{2}-41x+42=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 5\times 42}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 5\times 42}}{2\times 5}
Square -41.
x=\frac{-\left(-41\right)±\sqrt{1681-20\times 42}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-41\right)±\sqrt{1681-840}}{2\times 5}
Multiply -20 times 42.
x=\frac{-\left(-41\right)±\sqrt{841}}{2\times 5}
Add 1681 to -840.
x=\frac{-\left(-41\right)±29}{2\times 5}
Take the square root of 841.
x=\frac{41±29}{2\times 5}
The opposite of -41 is 41.
x=\frac{41±29}{10}
Multiply 2 times 5.
x=\frac{70}{10}
Now solve the equation x=\frac{41±29}{10} when ± is plus. Add 41 to 29.
x=7
Divide 70 by 10.
x=\frac{12}{10}
Now solve the equation x=\frac{41±29}{10} when ± is minus. Subtract 29 from 41.
x=\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
5x^{2}-41x+42=5\left(x-7\right)\left(x-\frac{6}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and \frac{6}{5} for x_{2}.
5x^{2}-41x+42=5\left(x-7\right)\times \frac{5x-6}{5}
Subtract \frac{6}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}-41x+42=\left(x-7\right)\left(5x-6\right)
Cancel out 5, the greatest common factor in 5 and 5.