Solve for x (complex solution)
x=\frac{3+3\sqrt{39}i}{10}\approx 0.3+1.8734994i
x=\frac{-3\sqrt{39}i+3}{10}\approx 0.3-1.8734994i
Graph
Share
Copied to clipboard
5x^{2}-3x+18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\times 18}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -3 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\times 18}}{2\times 5}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-20\times 18}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-3\right)±\sqrt{9-360}}{2\times 5}
Multiply -20 times 18.
x=\frac{-\left(-3\right)±\sqrt{-351}}{2\times 5}
Add 9 to -360.
x=\frac{-\left(-3\right)±3\sqrt{39}i}{2\times 5}
Take the square root of -351.
x=\frac{3±3\sqrt{39}i}{2\times 5}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{39}i}{10}
Multiply 2 times 5.
x=\frac{3+3\sqrt{39}i}{10}
Now solve the equation x=\frac{3±3\sqrt{39}i}{10} when ± is plus. Add 3 to 3i\sqrt{39}.
x=\frac{-3\sqrt{39}i+3}{10}
Now solve the equation x=\frac{3±3\sqrt{39}i}{10} when ± is minus. Subtract 3i\sqrt{39} from 3.
x=\frac{3+3\sqrt{39}i}{10} x=\frac{-3\sqrt{39}i+3}{10}
The equation is now solved.
5x^{2}-3x+18=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-3x+18-18=-18
Subtract 18 from both sides of the equation.
5x^{2}-3x=-18
Subtracting 18 from itself leaves 0.
\frac{5x^{2}-3x}{5}=-\frac{18}{5}
Divide both sides by 5.
x^{2}-\frac{3}{5}x=-\frac{18}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{18}{5}+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{18}{5}+\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{351}{100}
Add -\frac{18}{5} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{10}\right)^{2}=-\frac{351}{100}
Factor x^{2}-\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{351}{100}}
Take the square root of both sides of the equation.
x-\frac{3}{10}=\frac{3\sqrt{39}i}{10} x-\frac{3}{10}=-\frac{3\sqrt{39}i}{10}
Simplify.
x=\frac{3+3\sqrt{39}i}{10} x=\frac{-3\sqrt{39}i+3}{10}
Add \frac{3}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}