Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}-7x+10\right)
Factor out 5.
a+b=-7 ab=1\times 10=10
Consider x^{2}-7x+10. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
-1,-10 -2,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 10.
-1-10=-11 -2-5=-7
Calculate the sum for each pair.
a=-5 b=-2
The solution is the pair that gives sum -7.
\left(x^{2}-5x\right)+\left(-2x+10\right)
Rewrite x^{2}-7x+10 as \left(x^{2}-5x\right)+\left(-2x+10\right).
x\left(x-5\right)-2\left(x-5\right)
Factor out x in the first and -2 in the second group.
\left(x-5\right)\left(x-2\right)
Factor out common term x-5 by using distributive property.
5\left(x-5\right)\left(x-2\right)
Rewrite the complete factored expression.
5x^{2}-35x+50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 5\times 50}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 5\times 50}}{2\times 5}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-20\times 50}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-35\right)±\sqrt{1225-1000}}{2\times 5}
Multiply -20 times 50.
x=\frac{-\left(-35\right)±\sqrt{225}}{2\times 5}
Add 1225 to -1000.
x=\frac{-\left(-35\right)±15}{2\times 5}
Take the square root of 225.
x=\frac{35±15}{2\times 5}
The opposite of -35 is 35.
x=\frac{35±15}{10}
Multiply 2 times 5.
x=\frac{50}{10}
Now solve the equation x=\frac{35±15}{10} when ± is plus. Add 35 to 15.
x=5
Divide 50 by 10.
x=\frac{20}{10}
Now solve the equation x=\frac{35±15}{10} when ± is minus. Subtract 15 from 35.
x=2
Divide 20 by 10.
5x^{2}-35x+50=5\left(x-5\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and 2 for x_{2}.