Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-34x=-34
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}-34x-\left(-34\right)=-34-\left(-34\right)
Add 34 to both sides of the equation.
5x^{2}-34x-\left(-34\right)=0
Subtracting -34 from itself leaves 0.
5x^{2}-34x+34=0
Subtract -34 from 0.
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 5\times 34}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -34 for b, and 34 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 5\times 34}}{2\times 5}
Square -34.
x=\frac{-\left(-34\right)±\sqrt{1156-20\times 34}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-34\right)±\sqrt{1156-680}}{2\times 5}
Multiply -20 times 34.
x=\frac{-\left(-34\right)±\sqrt{476}}{2\times 5}
Add 1156 to -680.
x=\frac{-\left(-34\right)±2\sqrt{119}}{2\times 5}
Take the square root of 476.
x=\frac{34±2\sqrt{119}}{2\times 5}
The opposite of -34 is 34.
x=\frac{34±2\sqrt{119}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{119}+34}{10}
Now solve the equation x=\frac{34±2\sqrt{119}}{10} when ± is plus. Add 34 to 2\sqrt{119}.
x=\frac{\sqrt{119}+17}{5}
Divide 34+2\sqrt{119} by 10.
x=\frac{34-2\sqrt{119}}{10}
Now solve the equation x=\frac{34±2\sqrt{119}}{10} when ± is minus. Subtract 2\sqrt{119} from 34.
x=\frac{17-\sqrt{119}}{5}
Divide 34-2\sqrt{119} by 10.
x=\frac{\sqrt{119}+17}{5} x=\frac{17-\sqrt{119}}{5}
The equation is now solved.
5x^{2}-34x=-34
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-34x}{5}=-\frac{34}{5}
Divide both sides by 5.
x^{2}-\frac{34}{5}x=-\frac{34}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{34}{5}x+\left(-\frac{17}{5}\right)^{2}=-\frac{34}{5}+\left(-\frac{17}{5}\right)^{2}
Divide -\frac{34}{5}, the coefficient of the x term, by 2 to get -\frac{17}{5}. Then add the square of -\frac{17}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{5}x+\frac{289}{25}=-\frac{34}{5}+\frac{289}{25}
Square -\frac{17}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{5}x+\frac{289}{25}=\frac{119}{25}
Add -\frac{34}{5} to \frac{289}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{5}\right)^{2}=\frac{119}{25}
Factor x^{2}-\frac{34}{5}x+\frac{289}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{5}\right)^{2}}=\sqrt{\frac{119}{25}}
Take the square root of both sides of the equation.
x-\frac{17}{5}=\frac{\sqrt{119}}{5} x-\frac{17}{5}=-\frac{\sqrt{119}}{5}
Simplify.
x=\frac{\sqrt{119}+17}{5} x=\frac{17-\sqrt{119}}{5}
Add \frac{17}{5} to both sides of the equation.