Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-32x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 5\times 2}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 5\times 2}}{2\times 5}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-20\times 2}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-32\right)±\sqrt{1024-40}}{2\times 5}
Multiply -20 times 2.
x=\frac{-\left(-32\right)±\sqrt{984}}{2\times 5}
Add 1024 to -40.
x=\frac{-\left(-32\right)±2\sqrt{246}}{2\times 5}
Take the square root of 984.
x=\frac{32±2\sqrt{246}}{2\times 5}
The opposite of -32 is 32.
x=\frac{32±2\sqrt{246}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{246}+32}{10}
Now solve the equation x=\frac{32±2\sqrt{246}}{10} when ± is plus. Add 32 to 2\sqrt{246}.
x=\frac{\sqrt{246}+16}{5}
Divide 32+2\sqrt{246} by 10.
x=\frac{32-2\sqrt{246}}{10}
Now solve the equation x=\frac{32±2\sqrt{246}}{10} when ± is minus. Subtract 2\sqrt{246} from 32.
x=\frac{16-\sqrt{246}}{5}
Divide 32-2\sqrt{246} by 10.
5x^{2}-32x+2=5\left(x-\frac{\sqrt{246}+16}{5}\right)\left(x-\frac{16-\sqrt{246}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{16+\sqrt{246}}{5} for x_{1} and \frac{16-\sqrt{246}}{5} for x_{2}.