Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2+7x-14
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}-16+7x
Subtract 14 from -2 to get -16.
factor(x^{2}-2+7x-14)
Combine 5x^{2} and -4x^{2} to get x^{2}.
factor(x^{2}-16+7x)
Subtract 14 from -2 to get -16.
x^{2}+7x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\left(-16\right)}}{2}
Square 7.
x=\frac{-7±\sqrt{49+64}}{2}
Multiply -4 times -16.
x=\frac{-7±\sqrt{113}}{2}
Add 49 to 64.
x=\frac{\sqrt{113}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{113}}{2} when ± is plus. Add -7 to \sqrt{113}.
x=\frac{-\sqrt{113}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{113}}{2} when ± is minus. Subtract \sqrt{113} from -7.
x^{2}+7x-16=\left(x-\frac{\sqrt{113}-7}{2}\right)\left(x-\frac{-\sqrt{113}-7}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+\sqrt{113}}{2} for x_{1} and \frac{-7-\sqrt{113}}{2} for x_{2}.