Factor
\left(5x-21\right)\left(x+1\right)
Evaluate
\left(5x-21\right)\left(x+1\right)
Graph
Share
Copied to clipboard
a+b=-16 ab=5\left(-21\right)=-105
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
1,-105 3,-35 5,-21 7,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Calculate the sum for each pair.
a=-21 b=5
The solution is the pair that gives sum -16.
\left(5x^{2}-21x\right)+\left(5x-21\right)
Rewrite 5x^{2}-16x-21 as \left(5x^{2}-21x\right)+\left(5x-21\right).
x\left(5x-21\right)+5x-21
Factor out x in 5x^{2}-21x.
\left(5x-21\right)\left(x+1\right)
Factor out common term 5x-21 by using distributive property.
5x^{2}-16x-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\left(-21\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 5\left(-21\right)}}{2\times 5}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-20\left(-21\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-16\right)±\sqrt{256+420}}{2\times 5}
Multiply -20 times -21.
x=\frac{-\left(-16\right)±\sqrt{676}}{2\times 5}
Add 256 to 420.
x=\frac{-\left(-16\right)±26}{2\times 5}
Take the square root of 676.
x=\frac{16±26}{2\times 5}
The opposite of -16 is 16.
x=\frac{16±26}{10}
Multiply 2 times 5.
x=\frac{42}{10}
Now solve the equation x=\frac{16±26}{10} when ± is plus. Add 16 to 26.
x=\frac{21}{5}
Reduce the fraction \frac{42}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{10}{10}
Now solve the equation x=\frac{16±26}{10} when ± is minus. Subtract 26 from 16.
x=-1
Divide -10 by 10.
5x^{2}-16x-21=5\left(x-\frac{21}{5}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{21}{5} for x_{1} and -1 for x_{2}.
5x^{2}-16x-21=5\left(x-\frac{21}{5}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5x^{2}-16x-21=5\times \frac{5x-21}{5}\left(x+1\right)
Subtract \frac{21}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}-16x-21=\left(5x-21\right)\left(x+1\right)
Cancel out 5, the greatest common factor in 5 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}