Solve for x
x = \frac{\sqrt{889} + 33}{2} \approx 31.408051516
x = \frac{33 - \sqrt{889}}{2} \approx 1.591948484
Graph
Share
Copied to clipboard
5x^{2}-165x+250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-165\right)±\sqrt{\left(-165\right)^{2}-4\times 5\times 250}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -165 for b, and 250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-165\right)±\sqrt{27225-4\times 5\times 250}}{2\times 5}
Square -165.
x=\frac{-\left(-165\right)±\sqrt{27225-20\times 250}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-165\right)±\sqrt{27225-5000}}{2\times 5}
Multiply -20 times 250.
x=\frac{-\left(-165\right)±\sqrt{22225}}{2\times 5}
Add 27225 to -5000.
x=\frac{-\left(-165\right)±5\sqrt{889}}{2\times 5}
Take the square root of 22225.
x=\frac{165±5\sqrt{889}}{2\times 5}
The opposite of -165 is 165.
x=\frac{165±5\sqrt{889}}{10}
Multiply 2 times 5.
x=\frac{5\sqrt{889}+165}{10}
Now solve the equation x=\frac{165±5\sqrt{889}}{10} when ± is plus. Add 165 to 5\sqrt{889}.
x=\frac{\sqrt{889}+33}{2}
Divide 165+5\sqrt{889} by 10.
x=\frac{165-5\sqrt{889}}{10}
Now solve the equation x=\frac{165±5\sqrt{889}}{10} when ± is minus. Subtract 5\sqrt{889} from 165.
x=\frac{33-\sqrt{889}}{2}
Divide 165-5\sqrt{889} by 10.
x=\frac{\sqrt{889}+33}{2} x=\frac{33-\sqrt{889}}{2}
The equation is now solved.
5x^{2}-165x+250=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-165x+250-250=-250
Subtract 250 from both sides of the equation.
5x^{2}-165x=-250
Subtracting 250 from itself leaves 0.
\frac{5x^{2}-165x}{5}=-\frac{250}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{165}{5}\right)x=-\frac{250}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-33x=-\frac{250}{5}
Divide -165 by 5.
x^{2}-33x=-50
Divide -250 by 5.
x^{2}-33x+\left(-\frac{33}{2}\right)^{2}=-50+\left(-\frac{33}{2}\right)^{2}
Divide -33, the coefficient of the x term, by 2 to get -\frac{33}{2}. Then add the square of -\frac{33}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-33x+\frac{1089}{4}=-50+\frac{1089}{4}
Square -\frac{33}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-33x+\frac{1089}{4}=\frac{889}{4}
Add -50 to \frac{1089}{4}.
\left(x-\frac{33}{2}\right)^{2}=\frac{889}{4}
Factor x^{2}-33x+\frac{1089}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{33}{2}\right)^{2}}=\sqrt{\frac{889}{4}}
Take the square root of both sides of the equation.
x-\frac{33}{2}=\frac{\sqrt{889}}{2} x-\frac{33}{2}=-\frac{\sqrt{889}}{2}
Simplify.
x=\frac{\sqrt{889}+33}{2} x=\frac{33-\sqrt{889}}{2}
Add \frac{33}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}