Solve for x
x=5\sqrt{2}+5\approx 12.071067812
x=5-5\sqrt{2}\approx -2.071067812
Graph
Share
Copied to clipboard
5x^{2}-125-50x=0
Subtract 50x from both sides.
5x^{2}-50x-125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\left(-125\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -50 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\left(-125\right)}}{2\times 5}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500-20\left(-125\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-50\right)±\sqrt{2500+2500}}{2\times 5}
Multiply -20 times -125.
x=\frac{-\left(-50\right)±\sqrt{5000}}{2\times 5}
Add 2500 to 2500.
x=\frac{-\left(-50\right)±50\sqrt{2}}{2\times 5}
Take the square root of 5000.
x=\frac{50±50\sqrt{2}}{2\times 5}
The opposite of -50 is 50.
x=\frac{50±50\sqrt{2}}{10}
Multiply 2 times 5.
x=\frac{50\sqrt{2}+50}{10}
Now solve the equation x=\frac{50±50\sqrt{2}}{10} when ± is plus. Add 50 to 50\sqrt{2}.
x=5\sqrt{2}+5
Divide 50+50\sqrt{2} by 10.
x=\frac{50-50\sqrt{2}}{10}
Now solve the equation x=\frac{50±50\sqrt{2}}{10} when ± is minus. Subtract 50\sqrt{2} from 50.
x=5-5\sqrt{2}
Divide 50-50\sqrt{2} by 10.
x=5\sqrt{2}+5 x=5-5\sqrt{2}
The equation is now solved.
5x^{2}-125-50x=0
Subtract 50x from both sides.
5x^{2}-50x=125
Add 125 to both sides. Anything plus zero gives itself.
\frac{5x^{2}-50x}{5}=\frac{125}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{50}{5}\right)x=\frac{125}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-10x=\frac{125}{5}
Divide -50 by 5.
x^{2}-10x=25
Divide 125 by 5.
x^{2}-10x+\left(-5\right)^{2}=25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=25+25
Square -5.
x^{2}-10x+25=50
Add 25 to 25.
\left(x-5\right)^{2}=50
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
x-5=5\sqrt{2} x-5=-5\sqrt{2}
Simplify.
x=5\sqrt{2}+5 x=5-5\sqrt{2}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}