Solve for x
x=-8
x=0
Graph
Share
Copied to clipboard
5x^{2}+40x=0
Add 40x to both sides.
x\left(5x+40\right)=0
Factor out x.
x=0 x=-8
To find equation solutions, solve x=0 and 5x+40=0.
5x^{2}+40x=0
Add 40x to both sides.
x=\frac{-40±\sqrt{40^{2}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 40 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±40}{2\times 5}
Take the square root of 40^{2}.
x=\frac{-40±40}{10}
Multiply 2 times 5.
x=\frac{0}{10}
Now solve the equation x=\frac{-40±40}{10} when ± is plus. Add -40 to 40.
x=0
Divide 0 by 10.
x=-\frac{80}{10}
Now solve the equation x=\frac{-40±40}{10} when ± is minus. Subtract 40 from -40.
x=-8
Divide -80 by 10.
x=0 x=-8
The equation is now solved.
5x^{2}+40x=0
Add 40x to both sides.
\frac{5x^{2}+40x}{5}=\frac{0}{5}
Divide both sides by 5.
x^{2}+\frac{40}{5}x=\frac{0}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+8x=\frac{0}{5}
Divide 40 by 5.
x^{2}+8x=0
Divide 0 by 5.
x^{2}+8x+4^{2}=4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=16
Square 4.
\left(x+4\right)^{2}=16
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x+4=4 x+4=-4
Simplify.
x=0 x=-8
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}