Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

93x^{2}-240=0
Combine 5x^{2} and 88x^{2} to get 93x^{2}.
93x^{2}=240
Add 240 to both sides. Anything plus zero gives itself.
x^{2}=\frac{240}{93}
Divide both sides by 93.
x^{2}=\frac{80}{31}
Reduce the fraction \frac{240}{93} to lowest terms by extracting and canceling out 3.
x=\frac{4\sqrt{155}}{31} x=-\frac{4\sqrt{155}}{31}
Take the square root of both sides of the equation.
93x^{2}-240=0
Combine 5x^{2} and 88x^{2} to get 93x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 93\left(-240\right)}}{2\times 93}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 93 for a, 0 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 93\left(-240\right)}}{2\times 93}
Square 0.
x=\frac{0±\sqrt{-372\left(-240\right)}}{2\times 93}
Multiply -4 times 93.
x=\frac{0±\sqrt{89280}}{2\times 93}
Multiply -372 times -240.
x=\frac{0±24\sqrt{155}}{2\times 93}
Take the square root of 89280.
x=\frac{0±24\sqrt{155}}{186}
Multiply 2 times 93.
x=\frac{4\sqrt{155}}{31}
Now solve the equation x=\frac{0±24\sqrt{155}}{186} when ± is plus.
x=-\frac{4\sqrt{155}}{31}
Now solve the equation x=\frac{0±24\sqrt{155}}{186} when ± is minus.
x=\frac{4\sqrt{155}}{31} x=-\frac{4\sqrt{155}}{31}
The equation is now solved.