Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+6x-12=112
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+6x-12-112=112-112
Subtract 112 from both sides of the equation.
5x^{2}+6x-12-112=0
Subtracting 112 from itself leaves 0.
5x^{2}+6x-124=0
Subtract 112 from -12.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-124\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 6 for b, and -124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5\left(-124\right)}}{2\times 5}
Square 6.
x=\frac{-6±\sqrt{36-20\left(-124\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-6±\sqrt{36+2480}}{2\times 5}
Multiply -20 times -124.
x=\frac{-6±\sqrt{2516}}{2\times 5}
Add 36 to 2480.
x=\frac{-6±2\sqrt{629}}{2\times 5}
Take the square root of 2516.
x=\frac{-6±2\sqrt{629}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{629}-6}{10}
Now solve the equation x=\frac{-6±2\sqrt{629}}{10} when ± is plus. Add -6 to 2\sqrt{629}.
x=\frac{\sqrt{629}-3}{5}
Divide -6+2\sqrt{629} by 10.
x=\frac{-2\sqrt{629}-6}{10}
Now solve the equation x=\frac{-6±2\sqrt{629}}{10} when ± is minus. Subtract 2\sqrt{629} from -6.
x=\frac{-\sqrt{629}-3}{5}
Divide -6-2\sqrt{629} by 10.
x=\frac{\sqrt{629}-3}{5} x=\frac{-\sqrt{629}-3}{5}
The equation is now solved.
5x^{2}+6x-12=112
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+6x-12-\left(-12\right)=112-\left(-12\right)
Add 12 to both sides of the equation.
5x^{2}+6x=112-\left(-12\right)
Subtracting -12 from itself leaves 0.
5x^{2}+6x=124
Subtract -12 from 112.
\frac{5x^{2}+6x}{5}=\frac{124}{5}
Divide both sides by 5.
x^{2}+\frac{6}{5}x=\frac{124}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{124}{5}+\left(\frac{3}{5}\right)^{2}
Divide \frac{6}{5}, the coefficient of the x term, by 2 to get \frac{3}{5}. Then add the square of \frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{124}{5}+\frac{9}{25}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{629}{25}
Add \frac{124}{5} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{5}\right)^{2}=\frac{629}{25}
Factor x^{2}+\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{629}{25}}
Take the square root of both sides of the equation.
x+\frac{3}{5}=\frac{\sqrt{629}}{5} x+\frac{3}{5}=-\frac{\sqrt{629}}{5}
Simplify.
x=\frac{\sqrt{629}-3}{5} x=\frac{-\sqrt{629}-3}{5}
Subtract \frac{3}{5} from both sides of the equation.