Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+4x+11+8x
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
-2x^{2}+12x+11
Combine 4x and 8x to get 12x.
factor(-2x^{2}+4x+11+8x)
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
factor(-2x^{2}+12x+11)
Combine 4x and 8x to get 12x.
-2x^{2}+12x+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\times 11}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-2\right)\times 11}}{2\left(-2\right)}
Square 12.
x=\frac{-12±\sqrt{144+8\times 11}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-12±\sqrt{144+88}}{2\left(-2\right)}
Multiply 8 times 11.
x=\frac{-12±\sqrt{232}}{2\left(-2\right)}
Add 144 to 88.
x=\frac{-12±2\sqrt{58}}{2\left(-2\right)}
Take the square root of 232.
x=\frac{-12±2\sqrt{58}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{58}-12}{-4}
Now solve the equation x=\frac{-12±2\sqrt{58}}{-4} when ± is plus. Add -12 to 2\sqrt{58}.
x=-\frac{\sqrt{58}}{2}+3
Divide -12+2\sqrt{58} by -4.
x=\frac{-2\sqrt{58}-12}{-4}
Now solve the equation x=\frac{-12±2\sqrt{58}}{-4} when ± is minus. Subtract 2\sqrt{58} from -12.
x=\frac{\sqrt{58}}{2}+3
Divide -12-2\sqrt{58} by -4.
-2x^{2}+12x+11=-2\left(x-\left(-\frac{\sqrt{58}}{2}+3\right)\right)\left(x-\left(\frac{\sqrt{58}}{2}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-\frac{\sqrt{58}}{2} for x_{1} and 3+\frac{\sqrt{58}}{2} for x_{2}.