Solve for x (complex solution)
x=\frac{\sqrt{85}i}{5}+2\approx 2+1.843908891i
x=-\frac{\sqrt{85}i}{5}+2\approx 2-1.843908891i
Graph
Share
Copied to clipboard
5x^{2}+60x-20x^{2}+9=120
Use the distributive property to multiply 4x by 15-5x.
-15x^{2}+60x+9=120
Combine 5x^{2} and -20x^{2} to get -15x^{2}.
-15x^{2}+60x+9-120=0
Subtract 120 from both sides.
-15x^{2}+60x-111=0
Subtract 120 from 9 to get -111.
x=\frac{-60±\sqrt{60^{2}-4\left(-15\right)\left(-111\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 60 for b, and -111 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-15\right)\left(-111\right)}}{2\left(-15\right)}
Square 60.
x=\frac{-60±\sqrt{3600+60\left(-111\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-60±\sqrt{3600-6660}}{2\left(-15\right)}
Multiply 60 times -111.
x=\frac{-60±\sqrt{-3060}}{2\left(-15\right)}
Add 3600 to -6660.
x=\frac{-60±6\sqrt{85}i}{2\left(-15\right)}
Take the square root of -3060.
x=\frac{-60±6\sqrt{85}i}{-30}
Multiply 2 times -15.
x=\frac{-60+6\sqrt{85}i}{-30}
Now solve the equation x=\frac{-60±6\sqrt{85}i}{-30} when ± is plus. Add -60 to 6i\sqrt{85}.
x=-\frac{\sqrt{85}i}{5}+2
Divide -60+6i\sqrt{85} by -30.
x=\frac{-6\sqrt{85}i-60}{-30}
Now solve the equation x=\frac{-60±6\sqrt{85}i}{-30} when ± is minus. Subtract 6i\sqrt{85} from -60.
x=\frac{\sqrt{85}i}{5}+2
Divide -60-6i\sqrt{85} by -30.
x=-\frac{\sqrt{85}i}{5}+2 x=\frac{\sqrt{85}i}{5}+2
The equation is now solved.
5x^{2}+60x-20x^{2}+9=120
Use the distributive property to multiply 4x by 15-5x.
-15x^{2}+60x+9=120
Combine 5x^{2} and -20x^{2} to get -15x^{2}.
-15x^{2}+60x=120-9
Subtract 9 from both sides.
-15x^{2}+60x=111
Subtract 9 from 120 to get 111.
\frac{-15x^{2}+60x}{-15}=\frac{111}{-15}
Divide both sides by -15.
x^{2}+\frac{60}{-15}x=\frac{111}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-4x=\frac{111}{-15}
Divide 60 by -15.
x^{2}-4x=-\frac{37}{5}
Reduce the fraction \frac{111}{-15} to lowest terms by extracting and canceling out 3.
x^{2}-4x+\left(-2\right)^{2}=-\frac{37}{5}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{37}{5}+4
Square -2.
x^{2}-4x+4=-\frac{17}{5}
Add -\frac{37}{5} to 4.
\left(x-2\right)^{2}=-\frac{17}{5}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{17}{5}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{85}i}{5} x-2=-\frac{\sqrt{85}i}{5}
Simplify.
x=\frac{\sqrt{85}i}{5}+2 x=-\frac{\sqrt{85}i}{5}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}