Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+25x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\times 5\times 5}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{625-4\times 5\times 5}}{2\times 5}
Square 25.
x=\frac{-25±\sqrt{625-20\times 5}}{2\times 5}
Multiply -4 times 5.
x=\frac{-25±\sqrt{625-100}}{2\times 5}
Multiply -20 times 5.
x=\frac{-25±\sqrt{525}}{2\times 5}
Add 625 to -100.
x=\frac{-25±5\sqrt{21}}{2\times 5}
Take the square root of 525.
x=\frac{-25±5\sqrt{21}}{10}
Multiply 2 times 5.
x=\frac{5\sqrt{21}-25}{10}
Now solve the equation x=\frac{-25±5\sqrt{21}}{10} when ± is plus. Add -25 to 5\sqrt{21}.
x=\frac{\sqrt{21}-5}{2}
Divide -25+5\sqrt{21} by 10.
x=\frac{-5\sqrt{21}-25}{10}
Now solve the equation x=\frac{-25±5\sqrt{21}}{10} when ± is minus. Subtract 5\sqrt{21} from -25.
x=\frac{-\sqrt{21}-5}{2}
Divide -25-5\sqrt{21} by 10.
5x^{2}+25x+5=5\left(x-\frac{\sqrt{21}-5}{2}\right)\left(x-\frac{-\sqrt{21}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{21}}{2} for x_{1} and \frac{-5-\sqrt{21}}{2} for x_{2}.