Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+20x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\times 5\left(-2\right)}}{2\times 5}
Square 20.
x=\frac{-20±\sqrt{400-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-20±\sqrt{400+40}}{2\times 5}
Multiply -20 times -2.
x=\frac{-20±\sqrt{440}}{2\times 5}
Add 400 to 40.
x=\frac{-20±2\sqrt{110}}{2\times 5}
Take the square root of 440.
x=\frac{-20±2\sqrt{110}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{110}-20}{10}
Now solve the equation x=\frac{-20±2\sqrt{110}}{10} when ± is plus. Add -20 to 2\sqrt{110}.
x=\frac{\sqrt{110}}{5}-2
Divide -20+2\sqrt{110} by 10.
x=\frac{-2\sqrt{110}-20}{10}
Now solve the equation x=\frac{-20±2\sqrt{110}}{10} when ± is minus. Subtract 2\sqrt{110} from -20.
x=-\frac{\sqrt{110}}{5}-2
Divide -20-2\sqrt{110} by 10.
5x^{2}+20x-2=5\left(x-\left(\frac{\sqrt{110}}{5}-2\right)\right)\left(x-\left(-\frac{\sqrt{110}}{5}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2+\frac{\sqrt{110}}{5} for x_{1} and -2-\frac{\sqrt{110}}{5} for x_{2}.