Solve for x (complex solution)
x=\sqrt{7}-2\approx 0.645751311
x=-\left(\sqrt{7}+2\right)\approx -4.645751311
Solve for x
x=\sqrt{7}-2\approx 0.645751311
x=-\sqrt{7}-2\approx -4.645751311
Graph
Share
Copied to clipboard
5x^{2}+20x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\times 5\left(-15\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 20 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 5\left(-15\right)}}{2\times 5}
Square 20.
x=\frac{-20±\sqrt{400-20\left(-15\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-20±\sqrt{400+300}}{2\times 5}
Multiply -20 times -15.
x=\frac{-20±\sqrt{700}}{2\times 5}
Add 400 to 300.
x=\frac{-20±10\sqrt{7}}{2\times 5}
Take the square root of 700.
x=\frac{-20±10\sqrt{7}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{7}-20}{10}
Now solve the equation x=\frac{-20±10\sqrt{7}}{10} when ± is plus. Add -20 to 10\sqrt{7}.
x=\sqrt{7}-2
Divide -20+10\sqrt{7} by 10.
x=\frac{-10\sqrt{7}-20}{10}
Now solve the equation x=\frac{-20±10\sqrt{7}}{10} when ± is minus. Subtract 10\sqrt{7} from -20.
x=-\sqrt{7}-2
Divide -20-10\sqrt{7} by 10.
x=\sqrt{7}-2 x=-\sqrt{7}-2
The equation is now solved.
5x^{2}+20x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+20x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
5x^{2}+20x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
5x^{2}+20x=15
Subtract -15 from 0.
\frac{5x^{2}+20x}{5}=\frac{15}{5}
Divide both sides by 5.
x^{2}+\frac{20}{5}x=\frac{15}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+4x=\frac{15}{5}
Divide 20 by 5.
x^{2}+4x=3
Divide 15 by 5.
x^{2}+4x+2^{2}=3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=3+4
Square 2.
x^{2}+4x+4=7
Add 3 to 4.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.
5x^{2}+20x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\times 5\left(-15\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 20 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 5\left(-15\right)}}{2\times 5}
Square 20.
x=\frac{-20±\sqrt{400-20\left(-15\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-20±\sqrt{400+300}}{2\times 5}
Multiply -20 times -15.
x=\frac{-20±\sqrt{700}}{2\times 5}
Add 400 to 300.
x=\frac{-20±10\sqrt{7}}{2\times 5}
Take the square root of 700.
x=\frac{-20±10\sqrt{7}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{7}-20}{10}
Now solve the equation x=\frac{-20±10\sqrt{7}}{10} when ± is plus. Add -20 to 10\sqrt{7}.
x=\sqrt{7}-2
Divide -20+10\sqrt{7} by 10.
x=\frac{-10\sqrt{7}-20}{10}
Now solve the equation x=\frac{-20±10\sqrt{7}}{10} when ± is minus. Subtract 10\sqrt{7} from -20.
x=-\sqrt{7}-2
Divide -20-10\sqrt{7} by 10.
x=\sqrt{7}-2 x=-\sqrt{7}-2
The equation is now solved.
5x^{2}+20x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+20x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
5x^{2}+20x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
5x^{2}+20x=15
Subtract -15 from 0.
\frac{5x^{2}+20x}{5}=\frac{15}{5}
Divide both sides by 5.
x^{2}+\frac{20}{5}x=\frac{15}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+4x=\frac{15}{5}
Divide 20 by 5.
x^{2}+4x=3
Divide 15 by 5.
x^{2}+4x+2^{2}=3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=3+4
Square 2.
x^{2}+4x+4=7
Add 3 to 4.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}