Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+10x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-9\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-9\right)}}{2\times 5}
Square 10.
x=\frac{-10±\sqrt{100-20\left(-9\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-10±\sqrt{100+180}}{2\times 5}
Multiply -20 times -9.
x=\frac{-10±\sqrt{280}}{2\times 5}
Add 100 to 180.
x=\frac{-10±2\sqrt{70}}{2\times 5}
Take the square root of 280.
x=\frac{-10±2\sqrt{70}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{70}-10}{10}
Now solve the equation x=\frac{-10±2\sqrt{70}}{10} when ± is plus. Add -10 to 2\sqrt{70}.
x=\frac{\sqrt{70}}{5}-1
Divide -10+2\sqrt{70} by 10.
x=\frac{-2\sqrt{70}-10}{10}
Now solve the equation x=\frac{-10±2\sqrt{70}}{10} when ± is minus. Subtract 2\sqrt{70} from -10.
x=-\frac{\sqrt{70}}{5}-1
Divide -10-2\sqrt{70} by 10.
x=\frac{\sqrt{70}}{5}-1 x=-\frac{\sqrt{70}}{5}-1
The equation is now solved.
5x^{2}+10x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+10x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
5x^{2}+10x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
5x^{2}+10x=9
Subtract -9 from 0.
\frac{5x^{2}+10x}{5}=\frac{9}{5}
Divide both sides by 5.
x^{2}+\frac{10}{5}x=\frac{9}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+2x=\frac{9}{5}
Divide 10 by 5.
x^{2}+2x+1^{2}=\frac{9}{5}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{9}{5}+1
Square 1.
x^{2}+2x+1=\frac{14}{5}
Add \frac{9}{5} to 1.
\left(x+1\right)^{2}=\frac{14}{5}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{14}{5}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{70}}{5} x+1=-\frac{\sqrt{70}}{5}
Simplify.
x=\frac{\sqrt{70}}{5}-1 x=-\frac{\sqrt{70}}{5}-1
Subtract 1 from both sides of the equation.