Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}+6a=18
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5a^{2}+6a-18=18-18
Subtract 18 from both sides of the equation.
5a^{2}+6a-18=0
Subtracting 18 from itself leaves 0.
a=\frac{-6±\sqrt{6^{2}-4\times 5\left(-18\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 6 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-6±\sqrt{36-4\times 5\left(-18\right)}}{2\times 5}
Square 6.
a=\frac{-6±\sqrt{36-20\left(-18\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-6±\sqrt{36+360}}{2\times 5}
Multiply -20 times -18.
a=\frac{-6±\sqrt{396}}{2\times 5}
Add 36 to 360.
a=\frac{-6±6\sqrt{11}}{2\times 5}
Take the square root of 396.
a=\frac{-6±6\sqrt{11}}{10}
Multiply 2 times 5.
a=\frac{6\sqrt{11}-6}{10}
Now solve the equation a=\frac{-6±6\sqrt{11}}{10} when ± is plus. Add -6 to 6\sqrt{11}.
a=\frac{3\sqrt{11}-3}{5}
Divide -6+6\sqrt{11} by 10.
a=\frac{-6\sqrt{11}-6}{10}
Now solve the equation a=\frac{-6±6\sqrt{11}}{10} when ± is minus. Subtract 6\sqrt{11} from -6.
a=\frac{-3\sqrt{11}-3}{5}
Divide -6-6\sqrt{11} by 10.
a=\frac{3\sqrt{11}-3}{5} a=\frac{-3\sqrt{11}-3}{5}
The equation is now solved.
5a^{2}+6a=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5a^{2}+6a}{5}=\frac{18}{5}
Divide both sides by 5.
a^{2}+\frac{6}{5}a=\frac{18}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}+\frac{6}{5}a+\left(\frac{3}{5}\right)^{2}=\frac{18}{5}+\left(\frac{3}{5}\right)^{2}
Divide \frac{6}{5}, the coefficient of the x term, by 2 to get \frac{3}{5}. Then add the square of \frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{6}{5}a+\frac{9}{25}=\frac{18}{5}+\frac{9}{25}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{6}{5}a+\frac{9}{25}=\frac{99}{25}
Add \frac{18}{5} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{3}{5}\right)^{2}=\frac{99}{25}
Factor a^{2}+\frac{6}{5}a+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{5}\right)^{2}}=\sqrt{\frac{99}{25}}
Take the square root of both sides of the equation.
a+\frac{3}{5}=\frac{3\sqrt{11}}{5} a+\frac{3}{5}=-\frac{3\sqrt{11}}{5}
Simplify.
a=\frac{3\sqrt{11}-3}{5} a=\frac{-3\sqrt{11}-3}{5}
Subtract \frac{3}{5} from both sides of the equation.