Solve for g
\left\{\begin{matrix}g=\frac{2m}{5s^{2}}\text{, }&s\neq 0\\g\in \mathrm{R}\text{, }&m=0\text{ and }s=0\end{matrix}\right.
Solve for m
m=\frac{5gs^{2}}{2}
Share
Copied to clipboard
5m=\frac{1}{2}g\times 5^{2}s^{2}
Expand \left(5s\right)^{2}.
5m=\frac{1}{2}g\times 25s^{2}
Calculate 5 to the power of 2 and get 25.
5m=\frac{25}{2}gs^{2}
Multiply \frac{1}{2} and 25 to get \frac{25}{2}.
\frac{25}{2}gs^{2}=5m
Swap sides so that all variable terms are on the left hand side.
\frac{25s^{2}}{2}g=5m
The equation is in standard form.
\frac{2\times \frac{25s^{2}}{2}g}{25s^{2}}=\frac{2\times 5m}{25s^{2}}
Divide both sides by \frac{25}{2}s^{2}.
g=\frac{2\times 5m}{25s^{2}}
Dividing by \frac{25}{2}s^{2} undoes the multiplication by \frac{25}{2}s^{2}.
g=\frac{2m}{5s^{2}}
Divide 5m by \frac{25}{2}s^{2}.
5m=\frac{1}{2}g\times 5^{2}s^{2}
Expand \left(5s\right)^{2}.
5m=\frac{1}{2}g\times 25s^{2}
Calculate 5 to the power of 2 and get 25.
5m=\frac{25}{2}gs^{2}
Multiply \frac{1}{2} and 25 to get \frac{25}{2}.
5m=\frac{25gs^{2}}{2}
The equation is in standard form.
\frac{5m}{5}=\frac{25gs^{2}}{2\times 5}
Divide both sides by 5.
m=\frac{25gs^{2}}{2\times 5}
Dividing by 5 undoes the multiplication by 5.
m=\frac{5gs^{2}}{2}
Divide \frac{25gs^{2}}{2} by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}