Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(5x+15\right)x=7
Use the distributive property to multiply 5 by x+3.
5x^{2}+15x=7
Use the distributive property to multiply 5x+15 by x.
5x^{2}+15x-7=0
Subtract 7 from both sides.
x=\frac{-15±\sqrt{15^{2}-4\times 5\left(-7\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 15 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 5\left(-7\right)}}{2\times 5}
Square 15.
x=\frac{-15±\sqrt{225-20\left(-7\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-15±\sqrt{225+140}}{2\times 5}
Multiply -20 times -7.
x=\frac{-15±\sqrt{365}}{2\times 5}
Add 225 to 140.
x=\frac{-15±\sqrt{365}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{365}-15}{10}
Now solve the equation x=\frac{-15±\sqrt{365}}{10} when ± is plus. Add -15 to \sqrt{365}.
x=\frac{\sqrt{365}}{10}-\frac{3}{2}
Divide -15+\sqrt{365} by 10.
x=\frac{-\sqrt{365}-15}{10}
Now solve the equation x=\frac{-15±\sqrt{365}}{10} when ± is minus. Subtract \sqrt{365} from -15.
x=-\frac{\sqrt{365}}{10}-\frac{3}{2}
Divide -15-\sqrt{365} by 10.
x=\frac{\sqrt{365}}{10}-\frac{3}{2} x=-\frac{\sqrt{365}}{10}-\frac{3}{2}
The equation is now solved.
\left(5x+15\right)x=7
Use the distributive property to multiply 5 by x+3.
5x^{2}+15x=7
Use the distributive property to multiply 5x+15 by x.
\frac{5x^{2}+15x}{5}=\frac{7}{5}
Divide both sides by 5.
x^{2}+\frac{15}{5}x=\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+3x=\frac{7}{5}
Divide 15 by 5.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{7}{5}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{7}{5}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{73}{20}
Add \frac{7}{5} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{73}{20}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{73}{20}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{365}}{10} x+\frac{3}{2}=-\frac{\sqrt{365}}{10}
Simplify.
x=\frac{\sqrt{365}}{10}-\frac{3}{2} x=-\frac{\sqrt{365}}{10}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.