Evaluate
\frac{45\sqrt{6}}{8}\approx 13.778379803
Share
Copied to clipboard
5\times \frac{\sqrt{243}}{\sqrt{32}}
Rewrite the square root of the division \sqrt{\frac{243}{32}} as the division of square roots \frac{\sqrt{243}}{\sqrt{32}}.
5\times \frac{9\sqrt{3}}{\sqrt{32}}
Factor 243=9^{2}\times 3. Rewrite the square root of the product \sqrt{9^{2}\times 3} as the product of square roots \sqrt{9^{2}}\sqrt{3}. Take the square root of 9^{2}.
5\times \frac{9\sqrt{3}}{4\sqrt{2}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
5\times \frac{9\sqrt{3}\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{9\sqrt{3}}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5\times \frac{9\sqrt{3}\sqrt{2}}{4\times 2}
The square of \sqrt{2} is 2.
5\times \frac{9\sqrt{6}}{4\times 2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
5\times \frac{9\sqrt{6}}{8}
Multiply 4 and 2 to get 8.
\frac{5\times 9\sqrt{6}}{8}
Express 5\times \frac{9\sqrt{6}}{8} as a single fraction.
\frac{45\sqrt{6}}{8}
Multiply 5 and 9 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}