Evaluate
\frac{25\sqrt{1599}}{1066}\approx 0.937793106
Graph
Share
Copied to clipboard
5\sqrt{\frac{5}{82x\times \frac{52}{30x}}}
Multiply 5 and 6 to get 30.
5\sqrt{\frac{5}{\frac{82\times 52}{30x}x}}
Express 82\times \frac{52}{30x} as a single fraction.
5\sqrt{\frac{5}{\frac{41\times 52}{15x}x}}
Cancel out 2 in both numerator and denominator.
5\sqrt{\frac{5}{\frac{2132}{15x}x}}
Multiply 41 and 52 to get 2132.
5\sqrt{\frac{5}{\frac{2132x}{15x}}}
Express \frac{2132}{15x}x as a single fraction.
5\sqrt{\frac{5}{\frac{2132}{15}}}
Cancel out x in both numerator and denominator.
5\sqrt{5\times \frac{15}{2132}}
Divide 5 by \frac{2132}{15} by multiplying 5 by the reciprocal of \frac{2132}{15}.
5\sqrt{\frac{5\times 15}{2132}}
Express 5\times \frac{15}{2132} as a single fraction.
5\sqrt{\frac{75}{2132}}
Multiply 5 and 15 to get 75.
5\times \frac{\sqrt{75}}{\sqrt{2132}}
Rewrite the square root of the division \sqrt{\frac{75}{2132}} as the division of square roots \frac{\sqrt{75}}{\sqrt{2132}}.
5\times \frac{5\sqrt{3}}{\sqrt{2132}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
5\times \frac{5\sqrt{3}}{2\sqrt{533}}
Factor 2132=2^{2}\times 533. Rewrite the square root of the product \sqrt{2^{2}\times 533} as the product of square roots \sqrt{2^{2}}\sqrt{533}. Take the square root of 2^{2}.
5\times \frac{5\sqrt{3}\sqrt{533}}{2\left(\sqrt{533}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{3}}{2\sqrt{533}} by multiplying numerator and denominator by \sqrt{533}.
5\times \frac{5\sqrt{3}\sqrt{533}}{2\times 533}
The square of \sqrt{533} is 533.
5\times \frac{5\sqrt{1599}}{2\times 533}
To multiply \sqrt{3} and \sqrt{533}, multiply the numbers under the square root.
5\times \frac{5\sqrt{1599}}{1066}
Multiply 2 and 533 to get 1066.
\frac{5\times 5\sqrt{1599}}{1066}
Express 5\times \frac{5\sqrt{1599}}{1066} as a single fraction.
\frac{25\sqrt{1599}}{1066}
Multiply 5 and 5 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}