Solve for x
x=\frac{\left(\sqrt{y}+4\right)^{2}}{25}
y\geq 0
Solve for y
y=\left(5\sqrt{x}-4\right)^{2}
x\geq 0\text{ and }5\sqrt{x}-4\geq 0
Solve for x (complex solution)
x=\frac{\left(\sqrt{y}+4\right)^{2}}{25}
arg(\frac{\sqrt{y}+4}{5})<\pi
Solve for y (complex solution)
y=\left(5\sqrt{x}-4\right)^{2}
x=\frac{16}{25}\text{ or }arg(5\sqrt{x}-4)<\pi
Graph
Share
Copied to clipboard
5\sqrt{x}-\sqrt{y}-\left(-\sqrt{y}\right)=4-\left(-\sqrt{y}\right)
Subtract -\sqrt{y} from both sides of the equation.
5\sqrt{x}=4-\left(-\sqrt{y}\right)
Subtracting -\sqrt{y} from itself leaves 0.
5\sqrt{x}=\sqrt{y}+4
Subtract -\sqrt{y} from 4.
\frac{5\sqrt{x}}{5}=\frac{\sqrt{y}+4}{5}
Divide both sides by 5.
\sqrt{x}=\frac{\sqrt{y}+4}{5}
Dividing by 5 undoes the multiplication by 5.
x=\frac{\left(\sqrt{y}+4\right)^{2}}{25}
Square both sides of the equation.
-\sqrt{y}+5\sqrt{x}-5\sqrt{x}=4-5\sqrt{x}
Subtract 5\sqrt{x} from both sides of the equation.
-\sqrt{y}=4-5\sqrt{x}
Subtracting 5\sqrt{x} from itself leaves 0.
-\sqrt{y}=-5\sqrt{x}+4
Subtract 5\sqrt{x} from 4.
\frac{-\sqrt{y}}{-1}=\frac{-5\sqrt{x}+4}{-1}
Divide both sides by -1.
\sqrt{y}=\frac{-5\sqrt{x}+4}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{y}=5\sqrt{x}-4
Divide 4-5\sqrt{x} by -1.
y=\left(5\sqrt{x}-4\right)^{2}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}