Solve for y
y=\frac{\sqrt{10}}{25\sin(\alpha )}
\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}
Solve for α
\alpha =arcSin(\frac{1}{25}y^{-1}\times 10^{\frac{1}{2}})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\alpha =\pi +2\pi n_{2}+\left(-1\right)arcSin(\frac{1}{25}y^{-1}\times 10^{\frac{1}{2}})\text{, }n_{2}\in \mathrm{Z}
Graph
Share
Copied to clipboard
25\sqrt{2}y\sin(\alpha )=2\sqrt{5}
Multiply both sides of the equation by 5.
25\sqrt{2}\sin(\alpha )y=2\sqrt{5}
The equation is in standard form.
\frac{25\sqrt{2}\sin(\alpha )y}{25\sqrt{2}\sin(\alpha )}=\frac{2\sqrt{5}}{25\sqrt{2}\sin(\alpha )}
Divide both sides by 25\sqrt{2}\sin(\alpha ).
y=\frac{2\sqrt{5}}{25\sqrt{2}\sin(\alpha )}
Dividing by 25\sqrt{2}\sin(\alpha ) undoes the multiplication by 25\sqrt{2}\sin(\alpha ).
y=\frac{\sqrt{10}}{25\sin(\alpha )}
Divide 2\sqrt{5} by 25\sqrt{2}\sin(\alpha ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}