5 \left( x+c \right) -2 \left( x+d \right) = 3x+41
Solve for c
c=\frac{2d+41}{5}
Solve for d
d=\frac{5c-41}{2}
Graph
Share
Copied to clipboard
5x+5c-2\left(x+d\right)=3x+41
Use the distributive property to multiply 5 by x+c.
5x+5c-2x-2d=3x+41
Use the distributive property to multiply -2 by x+d.
3x+5c-2d=3x+41
Combine 5x and -2x to get 3x.
5c-2d=3x+41-3x
Subtract 3x from both sides.
5c-2d=41
Combine 3x and -3x to get 0.
5c=41+2d
Add 2d to both sides.
5c=2d+41
The equation is in standard form.
\frac{5c}{5}=\frac{2d+41}{5}
Divide both sides by 5.
c=\frac{2d+41}{5}
Dividing by 5 undoes the multiplication by 5.
5x+5c-2\left(x+d\right)=3x+41
Use the distributive property to multiply 5 by x+c.
5x+5c-2x-2d=3x+41
Use the distributive property to multiply -2 by x+d.
3x+5c-2d=3x+41
Combine 5x and -2x to get 3x.
5c-2d=3x+41-3x
Subtract 3x from both sides.
5c-2d=41
Combine 3x and -3x to get 0.
-2d=41-5c
Subtract 5c from both sides.
\frac{-2d}{-2}=\frac{41-5c}{-2}
Divide both sides by -2.
d=\frac{41-5c}{-2}
Dividing by -2 undoes the multiplication by -2.
d=\frac{5c-41}{2}
Divide 41-5c by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}