Solve for λ
\lambda =-\frac{13}{5}=-2.6
\lambda =1
Share
Copied to clipboard
a+b=8 ab=5\left(-13\right)=-65
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5\lambda ^{2}+a\lambda +b\lambda -13. To find a and b, set up a system to be solved.
-1,65 -5,13
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -65.
-1+65=64 -5+13=8
Calculate the sum for each pair.
a=-5 b=13
The solution is the pair that gives sum 8.
\left(5\lambda ^{2}-5\lambda \right)+\left(13\lambda -13\right)
Rewrite 5\lambda ^{2}+8\lambda -13 as \left(5\lambda ^{2}-5\lambda \right)+\left(13\lambda -13\right).
5\lambda \left(\lambda -1\right)+13\left(\lambda -1\right)
Factor out 5\lambda in the first and 13 in the second group.
\left(\lambda -1\right)\left(5\lambda +13\right)
Factor out common term \lambda -1 by using distributive property.
\lambda =1 \lambda =-\frac{13}{5}
To find equation solutions, solve \lambda -1=0 and 5\lambda +13=0.
5\lambda ^{2}+8\lambda -13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-8±\sqrt{8^{2}-4\times 5\left(-13\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 8 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-8±\sqrt{64-4\times 5\left(-13\right)}}{2\times 5}
Square 8.
\lambda =\frac{-8±\sqrt{64-20\left(-13\right)}}{2\times 5}
Multiply -4 times 5.
\lambda =\frac{-8±\sqrt{64+260}}{2\times 5}
Multiply -20 times -13.
\lambda =\frac{-8±\sqrt{324}}{2\times 5}
Add 64 to 260.
\lambda =\frac{-8±18}{2\times 5}
Take the square root of 324.
\lambda =\frac{-8±18}{10}
Multiply 2 times 5.
\lambda =\frac{10}{10}
Now solve the equation \lambda =\frac{-8±18}{10} when ± is plus. Add -8 to 18.
\lambda =1
Divide 10 by 10.
\lambda =-\frac{26}{10}
Now solve the equation \lambda =\frac{-8±18}{10} when ± is minus. Subtract 18 from -8.
\lambda =-\frac{13}{5}
Reduce the fraction \frac{-26}{10} to lowest terms by extracting and canceling out 2.
\lambda =1 \lambda =-\frac{13}{5}
The equation is now solved.
5\lambda ^{2}+8\lambda -13=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5\lambda ^{2}+8\lambda -13-\left(-13\right)=-\left(-13\right)
Add 13 to both sides of the equation.
5\lambda ^{2}+8\lambda =-\left(-13\right)
Subtracting -13 from itself leaves 0.
5\lambda ^{2}+8\lambda =13
Subtract -13 from 0.
\frac{5\lambda ^{2}+8\lambda }{5}=\frac{13}{5}
Divide both sides by 5.
\lambda ^{2}+\frac{8}{5}\lambda =\frac{13}{5}
Dividing by 5 undoes the multiplication by 5.
\lambda ^{2}+\frac{8}{5}\lambda +\left(\frac{4}{5}\right)^{2}=\frac{13}{5}+\left(\frac{4}{5}\right)^{2}
Divide \frac{8}{5}, the coefficient of the x term, by 2 to get \frac{4}{5}. Then add the square of \frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+\frac{8}{5}\lambda +\frac{16}{25}=\frac{13}{5}+\frac{16}{25}
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}+\frac{8}{5}\lambda +\frac{16}{25}=\frac{81}{25}
Add \frac{13}{5} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda +\frac{4}{5}\right)^{2}=\frac{81}{25}
Factor \lambda ^{2}+\frac{8}{5}\lambda +\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +\frac{4}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Take the square root of both sides of the equation.
\lambda +\frac{4}{5}=\frac{9}{5} \lambda +\frac{4}{5}=-\frac{9}{5}
Simplify.
\lambda =1 \lambda =-\frac{13}{5}
Subtract \frac{4}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}