Evaluate
5\left(5c+d\right)
Expand
25c+5d
Share
Copied to clipboard
5\left(3c-\left(d-2c-2d\right)\right)
Use the distributive property to multiply -2 by c+d.
5\left(3c-\left(-d-2c\right)\right)
Combine d and -2d to get -d.
5\left(3c-\left(-d\right)-\left(-2c\right)\right)
To find the opposite of -d-2c, find the opposite of each term.
5\left(3c+d-\left(-2c\right)\right)
The opposite of -d is d.
5\left(3c+d+2c\right)
The opposite of -2c is 2c.
5\left(5c+d\right)
Combine 3c and 2c to get 5c.
25c+5d
Use the distributive property to multiply 5 by 5c+d.
5\left(3c-\left(d-2c-2d\right)\right)
Use the distributive property to multiply -2 by c+d.
5\left(3c-\left(-d-2c\right)\right)
Combine d and -2d to get -d.
5\left(3c-\left(-d\right)-\left(-2c\right)\right)
To find the opposite of -d-2c, find the opposite of each term.
5\left(3c+d-\left(-2c\right)\right)
The opposite of -d is d.
5\left(3c+d+2c\right)
The opposite of -2c is 2c.
5\left(5c+d\right)
Combine 3c and 2c to get 5c.
25c+5d
Use the distributive property to multiply 5 by 5c+d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}