5 \% +10 \% -1.1 \% =
Evaluate
0.139
Factor
\frac{139}{2 ^ {3} \cdot 5 ^ {3}} = 0.139
Share
Copied to clipboard
\frac{1}{20}+\frac{10}{100}-\frac{1.1}{100}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{1}{20}+\frac{1}{10}-\frac{1.1}{100}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{1}{20}+\frac{2}{20}-\frac{1.1}{100}
Least common multiple of 20 and 10 is 20. Convert \frac{1}{20} and \frac{1}{10} to fractions with denominator 20.
\frac{1+2}{20}-\frac{1.1}{100}
Since \frac{1}{20} and \frac{2}{20} have the same denominator, add them by adding their numerators.
\frac{3}{20}-\frac{1.1}{100}
Add 1 and 2 to get 3.
\frac{3}{20}-\frac{11}{1000}
Expand \frac{1.1}{100} by multiplying both numerator and the denominator by 10.
\frac{150}{1000}-\frac{11}{1000}
Least common multiple of 20 and 1000 is 1000. Convert \frac{3}{20} and \frac{11}{1000} to fractions with denominator 1000.
\frac{150-11}{1000}
Since \frac{150}{1000} and \frac{11}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{139}{1000}
Subtract 11 from 150 to get 139.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}