Solve for n
n=\log_{7}\left(295561\right)\approx 6.473387546
Share
Copied to clipboard
15625+6^{7}=7^{n}
Calculate 5 to the power of 6 and get 15625.
15625+279936=7^{n}
Calculate 6 to the power of 7 and get 279936.
295561=7^{n}
Add 15625 and 279936 to get 295561.
7^{n}=295561
Swap sides so that all variable terms are on the left hand side.
\log(7^{n})=\log(295561)
Take the logarithm of both sides of the equation.
n\log(7)=\log(295561)
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(295561)}{\log(7)}
Divide both sides by \log(7).
n=\log_{7}\left(295561\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}